

WEB BASED TELEMATICS APPLICATION USING OPEN-SOURCE TECHNOLOGIES

Ionut Dinulescu, Dorin Popescu,
Gabriel Terejanu, Andras Marinescu

University of Craiova, Faculty of Automation, Computers & Electronics
Dept. of Automation and Mechatronics

107, Decebal Street, 200440, Craiova, Romania
E -mail: dorinp@robotics.ucv.ro

Abstract: The aim of the work was to develop the hardware and software structures to be
used in an e-teaching context. A web based application has been developed, which links a
programmable logic controller (PLC) with a computer for programming via Internet. The
main requirement of our application is to provide a friendly user interface that allows
PLC application developers to control the devices from anywhere in the world via a thin
client that does not need the installation of any additional software on the user side. After
considering several alternatives, it has been opted for web based open-source
technologies that considerably reduced the implementation costs while accomplishing the
other project requirements.

Keywords: telematics, web based application, programmable logic controller, open-
source technologies.

1. INTRODUCTION

The high cost necessary to carry out experiments (for
didactical purposes) with manipulators and robots in
various environments led to the development of
remote facilities where the physical system, sensors
and operating environment can be at a great distance.
Some researchers achieved an analysis of the current
challenges in Internet tele-programming and tried to
find the possible solutions under the current
environment, where there are some unsolved
common problems associated with this new
technology such as limited bandwidth and unreliable
signaling (Backes et al., 2000; Belmonte and
Sanchez, 2001; Taylor and Dalton, 1997).

Remote laboratories are laboratory experiments that
run remotely via a web interface. Usually, either the
student can set some parameters on the web, then a
software interface converts those parameters to a
form that is accepted by the local computer running
the experiment or he can tele-operate an equipment
(Berntzen et al. 2001; Ewald et al., 2000; Grange et

al., 2000; Hutzel, 2001; Popescu and Schilling, 2003;
Schilling et al., 1997).

We proposed more, namely the student can achieve a
program, which can run on the PLC. The student has
thorough freedom to choose what experiment wants
to do. The goal is remote programming of a PLC,
which controls a robotic manipulator for use in tele-
education. The robotic manipulator is controlled
through PLC and Internet connection.

Web-based tele-robotic systems have only become
available on the Internet in the last decade. In the
beginning they utilized a CGI interface to access the
robots (Backes et al., 2000; Schilling et al., 1997).
With the introduction of Java and its integration into
web browsers, developers could create tele-operated
systems that sustained an interactive link to the robot
during its execution. Many new tele-robotic systems
were created that gave the user much more control
and provided functionality, which under CGI could
have never been possible (Amin et al., 2001; Marin
and Sanz, 2001; Popescu and Schilling, 2003).

The Internet lab technology offers the students the
opportunity to work with sophisticated equipment, of
the kind they are more likely to find in an industrial
setting, and which may be too expensive for most
faculties to purchase.

This paper gives a solution for tele-programming of a
certain PLC. It tries to show an aspect of higher
education and training based on Information
Technology. The final purpose of the remote
laboratory is to allow the student to take full control
of the equipment, in order to fulfill the task required
by the teacher.

2. PLC AND TELE-ROBOTIC SYSTEM

The system consists of an IDEC IZUMI
Programmable Logic Controller, a modular robotic
manipulator, a network video camera and a
computer.

The IDEC IZUMI FA1J is a simple micro-PLC with
64 digital inputs, 64 digital outputs, 46 counters and
80 timers. The achieved editing software for IDEC
IZUMI PLC permits writing programs in statement
list. Our application has a help menu about
instructions of IDEC IZUMI PLC and about the way
to write programs.

The manipulator is a 3-axis manipulator type
translation-translation-translation manufactured with
pneumatic components (Fig. 1). The pick-and-place
manipulator has various discrete positions for its
gripper. The positions are determined by discrete
signals - "on" causes the manipulator to move to one
extreme position and "off" moves it to the other
extreme position. The manipulator has five powered
pneumatic solenoids. If all solenoids are off, no air is
applied to the manipulator's actuators.

Traditionally, a manipulator is connected to a PLC
via digital I/O or specific hardware interfaces. In this
case, the manipulator and PLC programs can only
communicate at a very low level (Popescu, 2001).

The control of the manipulator is made with the
IDEC IZUMI PLC (Fig. 1). The application
illustrates how a PLC may be used to control a
manipulator from a long distance.

3. TELEMATICS APPLICATIONS

The goal of this project in the remote programming
area is to discover and develop the system by
combining network technology with capabilities of
PLCs and manipulators. The use of Internet
technology for remote programming application
offers the advantage of low-cost deployment. There
is no longer a requirement for expensive purpose
built equipment at each operator's location. Almost
every computer connected to the Internet can be used
to control a tele-operable device. The downside is the
limitation of varying bandwidth and unpredictable
time delays. These Internet features should be
defined and considered before designing an efficient
remote programming system. Besides that, several
functional requirements should also be defined
before designing any tele-operable system.

This web-based application allows users to perform
own experiments remotely from another computer.
Using a standard web browser and a connection to
the Internet, the user can write his program for the
PLC. After this, the user uploads his program and the
results can be viewed on screen. The experiments
have video streams available for visual monitoring.

3.1 Performance requirements and technologies

used

The main requirement of this application is to
provide a friendly user interface that allows PLC
application developers to control the devices from
anywhere in the world via a thin client that does not
need the installation of any additional software on the
user side.

Another requirement is related to the costs that are
involved during the project development (e.g.
development tools, hardware, etc.).

After considering several alternatives, it has been
opted for web based open-source technologies that
considerably reduced the implementation costs while
accomplishing the other project requirements.

Thus, a bunch of open-source solutions were chosen
for the application development, such as: Java, PHP,
MySQL, Apache, JavaScript and HTML
(McLaughlin, 2000; Welling and Thomson, 2004;
Hall, 2000). In order to speed up the development
process and eliminate software bugs, additional open
source libraries and frameworks have also been used.
The role of` each one within the whole system will
be explained in the next paragraphs. Fig. 1. PLC and robotic manipulator

3.2 Application architecture

The general system structure is described in Fig. 2.
The only software needed on the user side is a
conventional web browser that can run JavaScript
scripts and Java applets. This application has been
tested and optimized to work on the most popular
web browsers including Internet Explorer and
FireFox, while other ones are currently being tested.
The Apache Server is responsible for the application
administration module, that involves users
management, PLC program editor, etc. The
functionality provided by this server is implemented
by making intensive use of PHP, HTML and
JavaScript. The MySQL database is mainly used for
storing data about registered users, questions that will
be asked within tests, and other persistent data.

The Tomcat Server maintains the communication
with the PLC. This module handles user’s requests
such as sending a program to the PLC and
monitoring the PLC’s status (variables, counters and
timers). The Java based technologies that are used
here include Turbine, Velocity and Servlets
(Kurniawan, 2002).

An AXIS web camera is used for sending live video
of the process to the user’s browser. This camera
model includes a built-in WEB server running under
Embedded Linux that transmits the video stream
either via an ActiveX control or a Java applet. While
the ActiveX transmission method gives better results,
the Java applet is a good choice for browsers that
don’t support ActiveX technology (such as Opera or
Konqueror).

3.3 Implementation details

Model-View-Controller design pattern
The server application that is running under Tomcat
Server has been developed according to the Model-
View-Controller design pattern (MVC). MVC is a
modern architecture suited for interactive
applications that provides a way of breaking the code
in three parts: the Model, the View and the
Controller. The relationship between them is
presented in Fig. 3 (Buschmann et al., 1996).

The Model component is the core of the application.
This maintains the state and data that the application
represents. When significant changes occur in the
Model, it updates all of its views. The Controller
receives input from the user and manipulates the
Model. The user interface is represented by the View
component that needs to be a registered view with the
model.

There are several advantages using the MVC design
pattern, including the following ones:
- clarity of design: the public methods in the model

stand as an API for all the commands available to
manipulate its data and state. By glancing at the
model's public method list, it should be easy to
understand how to control the model's behavior.

- multiple views: the application can display the
state of the model in a variety of ways, and
create/design them in a scalable, modular way;

- ease of growth: controllers and views can grow as
the model grows; and older versions of the views
and controllers can still be used as long as a
common interface is maintained;

User

Internet

Apache Server on
Linux

MySQL
database

Tomcat Server on
Windows XP

Fig. 2. General system architecture

Axis web
camera

FA1J PLC

Our application’s Controller is implemented by the
Turbine framework. The core Turbine components
that implement the Controller are Turbine Servlet and
Action Event Handlers. Actions are used within
Turbine to handle user input that requires interaction
with the Model. An action event can be assigned to a
button on a HTML page. For example, the user can
press on a Start/Stop button for controlling the PLC.
This button is assigned a Turbine action whose
handler function will send the appropriate command
to the PLC via the serial port. Similarly, there is an
action that is fired every time the user sends a
program to the PLC, by pressing the Send button.

The physical PLC device has a corresponding
software object (the FA1JComm singleton) inside the
application that handles all the communication with
the PLC. The FA1JComm object has the role of
Model component within the MVC architecture.
FA1JComm contains public methods for different
FA1J operations: sending a program, starting and
stopping the PLC, monitoring variables, timers and
counters, etc. Each of these methods is associated
with a Turbine action event handler contained in the
Controller part.

The response that is displayed inside the user’s web
browser is the View component that has been
implemented by using Jakarta’s Velocity framework.
This is an open-source Java-based template engine
that allows generation of web pages from predefined
templates. Velocity separates Java code from the web
pages, making the web site easier to maintain and
allows web designers to work in parallel with Java
developers, without making any changes to the Java
code. Velocity is the perfect implementation of the
View component and it is a viable alternative to JSP
technology that implies mixing Java and HTML
code.

Program editor
The module that allows the users to write their own
FA1J programs has been written using the PHP
language. PHP has been chosen because it has a very
good built-in support for parsing character strings,
which is indispensable for a language compiler. The
translator takes the list of instructions from the

HTML form, parses each line and, if there are no
errors, it transforms the line into FA1J machine code.
Checking for errors is also done on the fly, while the
user is editing the program in the web form, thus
eliminating the number of errors that are checked by
the compiler, and reducing compilation time.

One major phase during the project analysis was to
establish the machine code correspondences of each
FA1J instruction. The compiler handles 2 bytes
instructions in the format MNEMONIC OPERAND,
as well as 4 bytes instructions like JMP, CNT and
TIM. Currently not all of the instructions have been
implemented, but the way the compiler is written,
allows easy addition of new instructions, by only
including them in the list of existing ones, with
minimal changes of the source code. This approach
allows fast implementation of different instruction
sets for other PLC’s that are available in the
laboratory with less programming effort, by using the
existing PHP code.

Serial communication
A RS-232 serial link is used for transmitting the
program to the PLC and for monitoring its status.
FA1J uses an asynchronous communication based on
binary commands, acknowledgement codes and reply
messages that are exchanged between the PLC and
the PC. Establishing the communication protocol
used by FA1J was a very time consuming process
due to the lack of documentation on this subject. A
simple C++ was created for monitoring the RX and
TX channels of the serial port while the software
delivered with FA1J was sending different
commands to it. This allowed us to figure out what
codes need to be transmitted when our software
wants to send a program or to monitor different
internal variables, counters or timers.

One more issue that has been encountered is
happening when sending a program to the FA1J. In
order to eliminate the communication errors, FA1J
requires the communicating software to send it a
checksum value along with the instructions in
machine code format. After the program is
transmitted, FA1J recalculates the checksum based
on the data that has been received, compares it with
the value that has been sent by the software, and
decides whether the program is valid or not. The
main problem was to figure out the algorithm used
for the checksum calculation.

After we have solved these two problems mentioned
above, we were able to implement the
communication module in Java. Due to the fact that
Java applications do not have direct access to the
underlying hardware, we were enforced to use a
Windows dynamic library that enabled us
communicate with the Intel 8250 UART interface.
Although it was the only way to get access to the
serial port, this method bounds our Java application
to the Windows operating system, and requires

Fig. 3. Model-View-Controller

Controller View

Model

User

sees uses

updates manipulates

modifications in the code in order to port it to a free
environment such as Linux.

Next, we wrapped all the PC-PLC commands in the
FA1JComm singleton pattern that has only one
instance through the entire application, due to the fact
that the serial port cannot be opened more than once
at the same time by different processes. Also, this
approach is suitable for a multi-user environment like
the WEB, only one user being able to send data to the
PLC at a time. Taking into account that the serial port
is not a preemptable resource, we are using classic
synchronization objects like semaphores and Java
built-in monitors to avoid simultaneous access to the
serial port.

Monitor applet
A Java applet has been developed and embedded into
the web page, which enables the user to watch the
status of FA1J internal relays, timers and counters.
The applet is integrated in the MVC architecture as a
different View object. The communication with the
Tomcat server is accomplished by using Java’s
powerful serialization support. A problem that has
been encountered is related to the real time
capabilities of the applet: the delay time that occurs
during the transmission of the PLC’s status depends
on the speed of the network connection. Currently,
optimizations are made in order to decrease such
delays, but they will not be ever eliminated because
of hardware limitations

3.4 Website specifications

The application is created around only one main file,
‘index.php’. It is the one who handles the other
additional classes and templates according ‘op’
parameter. In fact, the ‘index.php’ file is a big
‘switch‘ structure which takes actions according the
value passed to ‘op’ parameter.

In fact, the application contains many additional files
grouped in three main categories:

- program files are the main files of the application
that include other files, that compute data and
take decisions

- classes are a special type of files; each of them
performs actions that handle table’s data.

- templates are files that contain almost entirely
HTML code that represent the design of the site;
these files contain only a few PHP or JavaScript
instructions necessary for a dynamic content.

The site map looks like this:

HOME
 |- admin
 |- config
 |- documentatie
 |- images
 |- js

 |- lab
 |- libs
 |- menu
 |- templates
 |- translator
 |- index.php

The application works like this: the script receives
some data, computes it and then reads the template
file and replaces the variables with corresponding
data creating a HTML content which will be output
to the user’s browser.

The script also uses sessions for security reasons. The
session keeps the username, the encrypted password
and the group to which the user belongs. The user
and password verification is done by the
correct_login function from common.php library.
The test is relatively simple. If the username and
password stored in session are not found in the users
table, it means that the user is not correctly logged
and he is redirected to the login page.

After the user passes the login phase he can select the
PLC model and then he has to go to the test section.
The test section selects three random questions
related to the PLC model. If the answer is wrong then
the script selects again three questions from the
database, that are usually different from the previous
three.

If the test is successfully passed then the user can
enter in the programming mode that allows him to
view and program the PLC in real time. The editor is
displayed in a popup window.

If the logged user has administrator rights, then he
can get into the administrator panel which allows him
to add, edit and delete questions and answers as well
as team mates. Here he can also activate users
accounts, read contact messages and manage them.
Something that is worth to be mentioned here is that
the script has a built-in mail client created around the
contact table. The contact table allows it to mark the
read messages so the administrator can easily see
which messages haven’t yet been read.

So when the administrator clicks on a message then
the script sets the value “1” in the read field of the
corresponding record in the contact table.

4. CONCLUSION

This project is currently being used at University of
Craiova (in the PLC class). Such remote laboratory
experiment method enables the student to use
laboratory equipment, which is not usually available
to the students.

The application has been tested inside the faculty
where a computer has been connected to Internet that

the user had used to program the PLC in order to
control the manipulator which was in another
laboratory.

Students can watch the manipulator via the
application. For the majority of remote experiments
via Internet in robotics, the student can teleoperate a
robot or set some parameters on the web and then he
can watch the robot movements. We performed
more, namely the student can write a program, which
can run on the PLC in order to move the robot as he
wants.

The application is provided with friendly GUI. The
exercises help students to understand and compare
different manipulator control methods using a PLC.

REFERENCES

Amin S., M. Zakaria, N. Majid, L. Siong, L. Horvath
and J. Tar (2001). Internet-based telerobotics:
UTM's experince and future direction, The 10th
International Conference on Advanced Robotics,
ICAR 2001, Budapest, Hungary, pp. 313-319.

Backes, P., K Tso, J. Norris, G. Tharp, J. Slostad, R.
Bonitz and K. All (2000). Internet based
operations for the Mars polar lander mission,
Proceedings of the 2000 IEEE International
Conference on Robotics & Automation, pp. 2025-
2032.

Belmonte Bermudez G. and M.A. Perez Sanchez
(2001). Robots Tele-programming, 1st Workshop
on Robotics Education and Training, RET 2001,
Weingarten, Germany, pp. 19-24.

Berntzen R., J.O. Strandman, T. Fjeldly and M. Shur
(2001). Advanced Solutions for Performing Real
Experiments over the Internet, Int. Conference on
Engineering Education, Oslo, 6B1, pp. 21-26.

Buschmann F., R. Meunier, H. Rohnert, P.
Sommerlad, M. Stal (1996). Pattern Oriented
Software Architecture, John Wiley & Sons.

Ewald H. and G.F. Page (2000). Performing
Experiments by Remote Control Using the
Internet, Global J. of Engineering. Education,
Vol. 4, No. 3.

Flanagan D. (2001). Java Script – The Definitive
Guide, O’Reilly.

Grange, S., T. Fong and C. Baur (2000). Effective
vehicle teleoperation on the world wide web,
Proceedings of the 2000 IEEE International
Conference on Robotics & Automation, pp. 2007-
2012.

Hall M. (2000). Core Servlets and Java Server
Pages, Prentice Hall.

Hutzel W. (2001). Creating a Virtual HVAC
Laboratory for Continuing/Distance Education,
Int. Conference on Engineering Education, Oslo,
6B1, pp. 11-14.

Kurniawan B. (2002). Java for the Web with Servlets,
JSP, and EJB: A Developer’s Guide to J2EE
Solutions, New Riders Publishing.

Marin R. and P. Sanz (2001) The UJI Telerobotic
Training System, 1st Workshop on Robotics
Education and Training, RET 2001, Weingarten,
Germany, pp. 25-30.

McLaughlin B. (2000). Java and XML, O’Reilly.
Popescu D. (2001). Programmable logic controllers,

Ed. Sitech, Craiova.
Popescu D. and K. Schilling (2003). TOM – A

Remote Laboratory for Mobile Robots Education,
7th International Conference on Intelligent
Engineering Systems, Assiut, Egipt, pp. 447-453.

Schilling, K., H. Roth and R. Lieb (1997).
Teleoperations of rovers – from Mars to
education, Proceedings IEEE International
Symposium on Industrial Electronics, 1, pp. 257-
262.

Taylor, K. and B. Dalton (1997). Issues in Internet
telerobotics, FSR 97 International Conference on
Field and Service Robotics, pp. 37-42.

Welling L., L. Thomson (2004). PHP and MySQL
Web Development (3rd Edition), Sams.

***, FA-1Junior Series, Programmable Controller -
Users Manual.

***, FA1J/FA2Junior Series, 1:1 Personal Computer
Link System - Users Manual.

