

MOBILE ROBOT NAVIGATION IN DYNAMIC ENVIRONMENTS USING PATH PLANNING
ALGORITHMS WITH FOCUSING HEURISTIC

Gheorghe LAZEA, Radu ROBOTIN,

Sorin HERLE, Florin COTOFAN

Technical University of Cluj-Napoca, Department of Automation
26-28 Baritiu Str., Cluj-Napoca

E-mail: {gheorghe.lazea; radu.robotin; sorin.herle; florin.cotofan}@aut.utcluj.ro

Abstract: This paper describes a version of D* algorithm with focusing heuristic for
mobile robot path planning in dynamic environments. The aim is to determine the
optimal path to the target using a map able to reflect the changes in the environment,
detected using the sensors system. The optimality of the trajectory may be considered
from path length point of view, time required to reach the goal position, or energy
consumption.

Keywords: mobile robot, path planning, navigation algorithm, focusing heuristic.

1. INTRODUCTION

Navigation is the science (or art) of directing the
course of a mobile robot as it traverses the
environment (land, sea, or air). Inherent in any

navigation scheme is the desire to reach a destination
without getting lost or crashing into anything
(McKerrow, 1995).
The navigation module comprises three sub-modules:
mapping, planning and driving,, as presented in
figure 1.

The ability to cross dynamic environments is
necessary for any real robot. From technical point of
view, the presence of dynamic obstacles increases the

Guiding
module

Driving

Mapping

Planning

Collision
avoidance

Sensors

Motion
control

Navigation module

EN
V

IR
O

N
M

EN
T

Fig.1. System architecture and mobile robot –
environment information flow.

difficulty of motion planning. In this case, the
shortest path from the length point of view is not
necessarily the shortest form time expenditure point
of view. Therefore optimality must involve both time
and path length. Moreover, if the energy
consumption is another term involved in the
optimality equation, special attention must be paid
when velocity and acceleration vectors are generated.
The security of the mobile robot is another important
issue. Most of the time, a “safe” trajectory tends to be
inefficient form the length point of view, therefore
the aim is to generate trajectory without loosing too
much efficiency.

2 PATH PLANNING

Considering that at a certain moment of time the
environment structure is known, it may be
represented in a map to be used by the path planner
task to generate the mobile robot trajectory as a
directed graph (a sequence of states, starting from
initial state and ending in the goal state). This
trajectory is optimal if the sum of all transitions (arc
costs) is minimum with respect to all possible
transitions in the graph. The states represent possible
robot locations while arc cost represent the cost of
mobile robot traverse from one state to the adjacent
one. If, during the path traverse one or more arcs are
found to be inaccurate (i.e. an obstacle initially
known has disappeared or, a new obstacle has been
detected) the remaining of the path must be re-
planned.
There are several algorithms suitable for optimal
search in a graph with variable arc costs. An example
of such algorithm is A* algorithm (Winston, 1984)
that uses an a-priori available map. The robot follows
the initial planed path until it discovers a discrepancy
between the map and the sensors extracted data. At
this point a re-planning may be necessary, thus the
algorithm may prove to be inefficient when the
distance between the start point and the target point is
large, due to the high number of necessary re-
planning operations.

The D* algorithm (Stentz, 1994) may be used to
generate optimal paths for a mobile robot using all
the available a-priori information (given as a map)
and sensor data. The map may be accurate,
incomplete or even empty. The arc cost may change
during the search, thus the algorithm is suitable for
use in dynamic environments. The problem of mobile
robot navigation may be defined as the problem of
finding the optimal path in a directed graph, in which
the arc labels represent the cost of traverse form the
current state to the adjacent one. The robot sensors
measure the arc costs in the vicinity of the robot and
the information is included in the map. The robot
starts at a particular state and moves across arcs
(incurring the cost of traversal) to other states until it
reaches the goal state, denoted by G. Every visited
state except G has a backpointer to a next state
denoted by b(X)=Y. D* uses backpointers to

represent paths to the goal. The cost of traversing an
arc from state to state is a positive number given by
the arc cost function c(X,Y). If Y does not have an
arc to X , then c(X,Y) is undefined. Two states X and
Y are neighbors in the space if c(X,Y) or c(Y,X) is
defined. In figure 2 is presented the graph
representation of the current robot location X and its
neighbors.

Fig. 2. Neighbors & cost function of a state X in the

robot space

The algorithm consists mainly of two functions:
Process_State and Modify_Cost. Function
Process_State is used to compute optimal trajectories
to the goal, while function Modify_Cost is used to
propagate cost changes to the neighbouring states.

3. FOCUSING HEURISTIC ALGORITHMS

Starting form initial D* algorithm, a focussing
heuristic algorithm may be implemented. It uses an
OPEN list to propagate information about changes to
the arc cost function and to calculate path costs to
states in the space. Referring to figure 2 again, every
state X has an associated tag t(X), such that if X has
never been on the list t(X)=NEW, if X is currently on
the list t(X)=OPEN, and if X is no longer on the list
t(X)=CLOSED. For each visited state X, D*
maintains an estimate of the sum of the arc costs
from X to G given by the path cost function h(X).
Given the proper conditions, this estimate is
equivalent to the minimal cost from state X to G. For
each state X on the OPEN list (i.e., t(X)=OPEN), the
key function, k(X), is defined to be equal to the
minimum of h(X) before modification and all values
assumed by h(X) since X was placed on the OPEN
list. The key function classifies a state X on the list
into one of two types: a RAISE state if k(X)<h(X),
and a LOWER state if k(X)=h(X). The algorithm uses
RAISE states on the OPEN list to propagate
information about path cost increases and LOWER
states to propagate information about path cost
reductions. The propagation takes place through the

repeated removal of states from the list. Each time a
state is removed from the OPEN list, it is expanded
to pass cost changes to its neighbors. These
neighbors are in turn placed on the OPEN list to
continue the process.
States are sorted on the OPEN list by a biased ()f D

value, given by (),b if X R , where X is the state on

the OPEN list and iR is the robot’s state at the time
X was inserted or adjusted on the OPEN list. Let
{ }0 1, , , NR R R… be the sequence of states occupied
by the robot when states were added to the OPEN
list. The value of the bias function is given by:

(,) (,) (,)0f X R f X R d R RB i i i= + (1)

where ()f D is the estimated robot path cost given
by:

1(,) () (,)i i if X R h X g R R −= + (2)

and ()d D is the accrued bias function given by:

0 1 0 2 1

1

(,) (,) (,)
(,)

i

i i

d R R g R R g R R
g R R ε−

= + +
+ +…

 (3)

if 0i > . If 0i = , 0 0(,) 0d R R = .

The function g(X,Y) is the focussing heuristic,
representing the estimated path cost from Y to X. The
list states are sorted by increasing ()bf D value, with

ties in ()bf D ordered by increasing ()f D , and ties in

()f D ordered by increasing ()k D . Ties in ()k D are
ordered arbitrarily. Thus, a vector of values

() () (), ,Bf f kD D D is stored with each state on the
list. Whenever a state is removed from the OPEN list,
its ()f D value is examined to see if it was computed

using the most recent focal point. If not, its ()f D and

()bf D values are recalculated using the new focal
point and accrued bias, respectively, and the state is
placed back on the list. Processing the ()bf D values
in ascending order ensures that the first encountered

()f D value using the current focal point is the

minimum such value, denoted by minf . Let valk be

its corresponding ()k D value. These parameters
comprise an important threshold for D*. By
processing properly-focussed ()f D values in

ascending order (and ()k D values in ascending order

for a constant ()f D value), the algorithm ensures
that for all states X, if min()f X f< or
(min()f X f= and () valh X k<), then ()h X is

optimal. The parameter val is used to store the

vector min , valf k for the purpose of this test. If

rR represents current robot position, the function

()r X is defined and returns the robot position when
the state X was removed from the OPEN list.

4. IMPLEMENTATION

The algorithm consists primarily of three functions:
Process_State, Modify_Cost, and Move_Robot.
Process_State computes optimal path costs to the
goal, Modify_Cost changes the arc cost function and
enters affected states on the OPEN list, and
Move_Robot uses the two functions to move the
robot.
The auxiliary routines are:

• MIN(a,b) returns the minimum of the two
scalar values a and b;

• LESS(a,b) takes a vector of values 1 2,a a for

a and a vector 1 2,b b for b and returns TRUE
if a1<b1 or (a1=b1 and a2<b2);

• LESSEQ takes two vectors a and b and returns
TRUE if a1<b1 or (a1=b1 and a2<=b2);

• COST(X) computes
() () (), ,r rf X R h X GVAL X R= + and

returns the vector of () (), ,rf X R h X
values for a state X;

• DELETE(X) deletes state X from the OPEN
list and sets t(X)=CLOSED;

• PUT_STATE(X) sets t(X)=OPEN and inserts
X on the OPEN list according to the
vector () () (), ,bf X f X k X ;

• GET_STATE returns the state on the OPEN
list with minimum vector value (NULL if the
list is empty).

The above-presented algorithm was implemented on
a mobile robot, equipped with 8 range finding
sensors. We have used client-server architecture,
with P2OS operating system on robot’s
microcontroller, and Saphira routines for the client
on a PC workstation. The software was implemented
using Microsoft Visual C++, and Saphira OS
functions using multithread functions, this solution
proved to be the most efficient way to connect to the
Saphira core. The core itself runs as a high priority
thread, with 100ms cycle time.

Figure 3 presents an typical potential wheel problem.
The grey obstacles are initially known while the
black obstacle is unknown. As figure 3 shows, the
grey part in the unknown obstacle is detected by the
robot’s sensors, the path is considered closed and the

Fig. 3. Trajectory for a typical potential wheel

problem.

a)

 b)

Fig. 4. Real experiment using Pioneer 2 mobile robot.
(a) Saphira navigation display screenshot; (b)
environment structure.

trajectory is re-planned. Figure 4.a shows a real
experiment using the environment in figure 4.b. No
a-priori information was available, the initial
trajectory was planned with an optimistic map and

the robot had to discover all the obstacles in the
environment.

5. CONCLUSIONS

The presented algorithm may handle the mobile robot
navigation in dynamic environments, working with a
complete spectrum of a-priori information, ranging
from a detailed and accurate map, to the absence of
information.
The further work will be conducted in order to
decrease the response time thus allowing mobile
robot cooperation in a multi-agent environment.

REFERENCES

McKerrow, P.J. (1995). Introduction in Robotics,
Addison-Wesley Pub. Company.
Winston, P.H. (1984). Artificial intelligence,
Addison-Wesley Pub. Company,.
Stentz, A. (1994). Optimal path planning for
partially known environments, Available from:
http://www.frc.ri.cmu.edu/~axs/ Accessed: 2000-12-
1,.
Latombe, J.-C.(1991). Robot Motion Planning,
Kluwer Academic Publishers, ISBN 0-7923-9206-X,
Boston MA.
*** (1998). Saphira User Manual, ActivMedia
Robotics.

This research was sponsored by CNCSIS in contract
no A 34.970/2003, code 39/1194, “Mobile robot
navigation in dynamic environments”

