DC-DC STEP-UP/DOWN CONVERTER USED TO DESIGN A SWITCHING POWER SUPPLY

PART B: Design Example, PSpice Simulation, Experimental Results, Practical Considerations and Conclusions

Adriana FLORESCU, Constantin RADOI
"Politehnica" University of Bucharest Faculty of Electronics, Telecommunications and Information Technology Bd. Iuliu Maniu 1-3, Bucharest, Romania adriana.florescu@home.ro, cradoi@elia.pub.ro

Abstract

The paper presents a DC-DC step-up/down converter used in switching power supply with monolithic switching regulator control circuits. The paper completely describes the design of the switching power supply starting with the simplified mathematical theory of the DC-DC step-up/down converter, getting on with the general description of MC34063 and $\mu \mathrm{A} 78 \mathrm{~S} 40$ operation modes and then with the mathematical theory of the DC-DC step-up/down converter in boundary conduction mode controlled by the switching regulation control circuits, the PSpice simulation of the whole switching power supply, a numerical example and ending with it's practical implementation. Conclusions about the efficiency of the switching power supply are drawn and some practical considerations are also included.

6. DESIGN EXAMPLE OF SWITCHING POWER SUPPLY WITH STEP-UP/DOWN CONVERTER

The design data are: $\mathrm{V}_{\text {in }}=7,5 \mathrm{~V} \ldots 14,5 \mathrm{~V}, \mathrm{~V}_{\text {out }}=10 \mathrm{~V}$, $\mathrm{I}_{\text {out }}=120 \mathrm{~mA}, \mathrm{f}_{\text {min }}=50 \mathrm{kHz}, \quad \mathrm{V}_{\text {ripple(}(\mathrm{p}-\mathrm{p})}=$ $1 \% V_{\text {out }}=100 \mathrm{mV}_{\text {p-p }}$. A DC-DC step-up/down converter is necessary and MC 34063 switching regulation control circuit is enough for this application.
The steps of the algorithm for this design example are:

1. The ratio of switches Q_{1} and Q_{2} conduction $t_{\text {on }}$ versus biases diodes D_{1} and D_{2} conduction $t_{\text {off }}$ is determined using equation (7):

$$
\begin{gather*}
\frac{t_{\text {on }}}{t_{\text {off }}}=\begin{array}{l}
\frac{V_{\text {out }}+V_{F(D 1)}+V_{(F D 2)}}{V_{\text {in }(\text { min })}-V_{\text {sat }(Q 1)}-V_{\text {sat }(Q 2)}} \\
=\frac{10 \mathrm{~V}+0,6 \mathrm{~V}+0,6 \mathrm{~V}}{7,5 \mathrm{~V}-0,8 \mathrm{~V}-0,8 \mathrm{~V}}=1,9
\end{array} \tag{17}
\end{gather*}
$$

2. The total switching cycle time of Q_{1} and Q_{2} is:

$$
\begin{equation*}
T_{(\max)}=t_{\text {on }(\max)}+t_{o f f}=\frac{1}{f_{\min }}=\frac{1}{50 \mathrm{kHz}}=20 \mu \mathrm{~s} \tag{18}
\end{equation*}
$$

3. From equations (17) and (18), on-time $t_{\text {on }}$ and offtime $t_{\text {off }}$ of the output switching transistors Q_{1} and Q_{2} are obtained:

$$
\begin{align*}
t_{\text {off }} & =\frac{T_{\max }}{\frac{t_{\text {on }}}{t_{\text {off }}}+1}=\frac{20 \mu \mathrm{~s}}{1,9+1}=6,9 \mu \mathrm{~s} \tag{19}\\
t_{\text {on }} & =T_{\text {max }}-t_{\text {off }}=20 \mu \mathrm{~s}-6,9 \mu \mathrm{~s}=13,1 \mu \mathrm{~s}
\end{align*}
$$

Switching transistors Q_{1} and Q_{2} minimum duty ratio value $\mathrm{D}=\mathrm{t}_{\mathrm{on}} / \mathrm{T}$ is:
$\frac{t_{\text {on }}}{T_{(\max)}}=\frac{13,1 \mu \mathrm{~s}}{20 \mu \mathrm{~s}}=0,655<\frac{6}{7}=0,857$.
Note that the minimum duty ratio value in equation (21) above respects MC34063 data catalogue sheets [5] and doesn't exceed the maximum 6/7 ratio that represents the charge-to-charge and discharge timing of external timing capacitor C_{T}.
4. The external timing capacitor C_{T} equation is given in MC34063 data catalogue sheets [5]:
$C_{T}=\frac{I_{\text {chg }(\text { min })}}{V_{\text {rippleCT }}} \cdot t_{\text {on }}=\frac{20 \cdot 10^{-6} \mathrm{~A}}{0,5 \mathrm{~V}} \cdot 13,1 \mu \mathrm{~s}=524 \mathrm{pF}(22)$
Use a standard $\mathrm{C}_{\mathrm{T}}=510 \mathrm{pF}$ capacitor.
5. The peak switch current is calculated with equation (9):

$$
I_{p k \text { switcl }=}=2 I_{\text {ou }}\left(\frac{t_{\text {on }}}{t_{\text {off }}}+1\right)=2 \cdot 120 \mathrm{nA} \cdot(1,9+1)=0,696 A(23)
$$

6. Since the maximum on-time and peak switch current are known from equations (20) and (23), the minimum value of inductance L can now be calculated with equation (11):
$L_{\text {min }}=\frac{V_{\text {in }(\min)}-V_{\text {sat }(Q 1)}-V_{\text {sat }(Q 2)}}{I_{p k(\text { switch })}} \cdot t_{\text {on }}=$
$=\frac{7,5 \mathrm{~V}-0,8 \mathrm{~V}-0,8 \mathrm{~V}}{0,696 \mathrm{~A}} \cdot 13,1 \mu \mathrm{~s}=111 \mu \mathrm{H}$
(24)

An inductance $\mathrm{L}=120 \mu \mathrm{H}>\mathrm{L}_{\text {min }}$ was selected to obtain the correct continuous conduction operation mode of the DC-DC step-up/down converter.
7. From previous equation (24), a value for the current limit resistor $\mathrm{R}_{\text {sc }}$ can be determined by using the current limit level of $\mathrm{I}_{\mathrm{pk}(\text { switch })}$ when $\mathrm{V}_{\mathrm{in}}=12 \mathrm{~V}$:
$I_{p k(\text { switch })}^{\prime}=\frac{V_{\text {in }}-V_{\text {sat }(Q 1)}-V_{\text {sat }(Q 2)}}{L_{\text {min }}} t_{\text {on }(\max)}=$
$=\frac{14,5 \mathrm{~V}-0,8 \mathrm{~V}-0,8 \mathrm{~V}}{120 \mu \mathrm{H}} \cdot 13,1 \mu \mathrm{~s}=1,41 \mathrm{~A}$
then the limit resistor value is given by the next equation from MC34063 data catalogue sheets [5]:
$R_{s c}=\frac{0,33}{I_{p k(s w i t c h)}^{\prime}}=\frac{0,33}{1,41}=0,23 \Omega$
Use a standard $\mathrm{R}_{\mathrm{sc}}=0,24 \Omega$
8. A minimum value for an ideal output filter capacitor is given by simplified equation (16):

$$
C_{0}=\frac{I_{\text {out }}}{V_{\text {ripple }(p-p)}} t_{\text {on }}=\frac{120 \mathrm{~mA}}{100 m V_{p-p}} \cdot 13,1 \mu \mathrm{~s}=15,7 \mu F
$$

Ideally this value of C_{0} would satisfy the design goal, however, a solid tantalum capacitor of this value will have a typical ESR of 0.3Ω which will contribute an additional 209 mV of ripple. Also there is a ripple component due to the gain of the comparator equal to :
$V_{\text {ripple }(p-p)}=\frac{V_{\text {out }}}{V_{\text {ref }}} \cdot 1,5 \cdot 10^{-3}=\frac{10 \mathrm{~V}}{1,25 \mathrm{~V}} \cdot 1,5 \cdot 10^{-3}=12 \mathrm{~m}$
The ripple components are not in phase, but can be assumed to be for a conservative design. It becomes apparent that ESR is the dominant factor in the selection of an output filter capacitor. Usualy, an additional LC filter is indicated to diminish $\mathrm{V}_{\text {ripple(p-p) }}$ until design input data are obtained.
A tantalum capacitor $\mathrm{C}_{0}=330 \mu \mathrm{~F}$ with an $\mathrm{ESR}=0,12 \Omega$ was selected to satisfy this design example by the following:
$E S R=\frac{V_{\text {ripple } p-p)}-\left(I_{\text {out }} / C_{0}\right) \cdot t_{\text {on }}-\left(V_{\text {out }} / V_{\text {ref }}\right) \cdot 1.5 \cdot 10^{-3} V}{I_{p k(\text { switch })}}$
9. The nominal output voltage $\mathrm{V}_{\text {out }}=5 \mathrm{~V}$ is programmed by R_{1} and R_{2} resistor divider in order to obtain the comparator output error voltage error $\mathrm{u}_{\mathrm{G}}=\mathrm{V}_{\text {ref }}-\mathrm{kV}_{\text {out }}=0$, where $k=R_{1} /\left(R_{1}+R_{2}\right)$. It results:
$V_{\text {out }}=V_{\text {ref }} / K=V_{\text {ref }}\left[\left(R_{2} / R_{T}\right)+l\right]=1,25 V \cdot\left[\left(R_{2} / R_{T}\right)+l\right]$
(27)

The MC34063 data catalogue sheets indicates that the current through resistor R_{1} must be lower than $900 \mu \mathrm{~A}$ in order to protect the switching power supply. It results $R_{1}=1,25 \mathrm{~V} / 900 \mu \mathrm{~A}=1,38 \mathrm{k} \Omega$ and a standard value $R_{1}=1,3 \mathrm{k} \Omega$ is chosen.
From equation (27) and knowing the value of resistor R_{1},
the value of resistor R_{2} is:
$R_{2}=R_{l}\left[\left(V_{\text {out }} 1,25 \mathrm{~V}\right)-1\right]=1,3 \mathrm{k} \Omega \cdot[(1 \mathrm{OV} / 1,25 \mathrm{~V})-1]=9,1 \mathrm{k} \Omega$
,(28)
which is a standard value.
10. Transistor Q_{1} is driven into saturation with an amplification factor $\beta_{\mathrm{F}}=20$ at an input voltage of 7.5 V . The required base current is:
$I_{B}=\frac{I_{p k(\text { switch })}}{\beta_{F}}=\frac{0,696 A}{20}=35 \mathrm{~mA}$
The value for the base-emitter turn-off resistor R_{BE} is determined by:
$R_{B E}=\frac{10 \beta_{F}}{I_{\text {pk(switch })}}=\frac{10 \cdot 20}{0,696 A}=287 \Omega$
Standard $\mathrm{R}_{\mathrm{BE}}=330 \Omega$ resistor was selected.
Additional base current required due to R_{BE} is:
$I_{R_{B E}}=\frac{V_{B E(Q 1)}}{R_{B E}}=\frac{0,8 \mathrm{~V}}{300 \Omega}=3 \mathrm{~mA}$
$R_{B}=\frac{V_{\text {in(min })}-V_{\text {satt (driver })}-V_{R_{S C}}-V_{B E(Q 1)}}{I_{B}+I_{R_{B E}}}=$
$=\frac{7,5 \mathrm{~V}-0,8 \mathrm{~V}-0,15 \mathrm{~V}-0,8 \mathrm{~V}}{(35+3) \cdot 10^{-3} \mathrm{~A}}=151 \Omega$
A standard $R_{B}=150 \Omega$ was used.
The basic schematics that results after the design above which correspond to the basic configuration of DC-DC step-up/down converter in fig. 1 is presented in fig. 4.

7. PSPICE SIMULATION OF DESIGNED SWITCHING POWER SUPPLY

PSpice under ORCAD was used to software verify the designed switching power supply with MC34063 that controles the DC-DC step-up/down converter. Subcircuit for MC34063 was included. PSpice circuit model is given in fig.5. The most important
simulation result is output voltage Vout waveform in fig. 6 that proves the stability of the switching power supply. The average value of Vout is of 10.5 V obatined after 2.5 ms of transient response. The output voltage ripple Vripple(p-p) is arround 0.8 V , eight times bigger than the given design value $\mathrm{V}_{\text {ripple(}(p-\mathrm{p})}=$ $1 \% \mathrm{~V}_{\text {out }}=100 \mathrm{mV}_{\mathrm{p}-\mathrm{p}}$. This bigger value can be explained
observing that fig. 4 doesn't include the optional suplementary LC filter strongly indicated in MC34063 data catalogue sheets because of limitation in designing the internal comparator and because of suplimentary output voltage ripple introduced by the output capacitor filter.

Fig.4. Basic schematics of switching power supply

Fig.5. PSpice circuit model for the designed switching power supply

Fig.6. Output voltage $\mathrm{V}_{\text {out }}$ obtained with PSpice simulation
voltage $\mathrm{V}_{\text {in }}=6.5 \mathrm{~V}$ and output voltage $\mathrm{V}_{\text {out }}$ arround 10 V waveforms

8. EXPERIMENTAL RESULTS

The final schematics for the designed switching power supply with MC34063 switching regulator control circuit for DC-DC step-up/down converter was obtained adding to fig. 4 shortcircuit protection resistors of $5.6 \mathrm{~K} \Omega$ and small
value resistors of 1Ω for an easy measurement of voltages in different points of the schematics. Input

Fig.7. Input voltage $\mathrm{V}_{\text {in }}$ and output voltage $\mathrm{V}_{\text {out }}$
on digital two-channels oscilloscope PSC64i are in fig. 7.
These waveforms are the most relevant for a switching power supply. Note that $\mathrm{V}_{\text {in }}$ is lower than the minimum 7.5 V initial design data the circuit still keeps it's nominal output voltage design data $\mathrm{V}_{\text {out }}=10 \mathrm{~V}$. The same operation stability was practicly observed on the oscilloscope for an input voltage $\mathrm{V}_{\text {in }}=16 \mathrm{~V}$, higher than the maximum 14.5 V
initial design data. Output power is of 1.2 W .
Other relevant waveforms that can be teoreticaly confirmed are shown in fig.8, 9 and 10 . $10 \times 0.1 \mathrm{~V}$ 10us

		VCE)	Q1)	:	\ddagger					
					\ddagger					
					\ddagger					
					\ddagger					
					\ddagger					
					F					

Vms: 0.02 V
Fig.8. Voltage V_{CE} across switch Q_{1}

Fig.9. Voltage V_{CT} across external timing capacitor C_{T}

9. PRACTICAL CONSIDERATIONS

The design equations for $L_{\text {min }}$ were based upon the assumption that the switching regulator is operating with a fixed input voltage, maximum output load current and a minimum charge-current oscillator. Typically the oscillator charge-current will be greater that the specific minimum of $20 \mu \mathrm{~A}$, thus t_{on} will be somewhat shorter and the actual LC operating frequency will be greater than predicted $f_{\text {min }}$. The voltage drop developed across the current-limit resistor $R_{\text {sc }}$ was not accounted for in the ratio $t_{\text {on }} / t_{\text {off }}$ and $\mathrm{L}_{\text {min }}$ formulas. This voltage drop must be considered when designing high current converters
that operate with an input voltage of less than 5 V . High frequency circuit layout techniques are imperative with
switching regulators. To minimize EMI, all high current loops should be kept as short as possible using heavy
copper runs. The low current signal and high current switch and output grounds should return on separate paths back to the input filter capacitor. The R_{1} and R_{2} output voltage divider should be located as close to the integrated circuit as possible to eliminate any noise pick-up into the feedback loop. The circuit diagrams were purposely drawn in a manner to depick this. All circuits used permalloy power toroid cores for the magnetics where only the inductance value is given.

10. CONCLUSIONS

The goal of this paper was to obtain simple and complete switching power supplies with MC34063 or

Fig.10. Voltage $\mathrm{V}_{\mathrm{C} 0}$ across output filter capacitor C_{T}
$\mu \mathrm{A} 78 \mathrm{~S} 40$ monolithic switching regulator subsystems used to control DC-DC step-up/down converter.
The paper was split in Part A and Part B. Part A included a brief introduction, basic operation and simplified mathematical theory of DC-DC stepup/down converter, general and functional description of monolithic switching regulator control circuits MC34063 and $\mu \mathrm{A} 78 \mathrm{~S} 40$ and mathematical theory of DC-DC step-up/down converter controlled by them. Part B included a design example of switching power supply with step-up/down converter, the PSpice simulation of designed switching power supply, some relevant experimental results, some practical considerations and the final conclusion which is that mathematical theory fits with the simulation and experimental results.
The circuit performance data shows excellent line and load regulation. There is some loss in conversion efficiency over the basic step-down or step-up circuits [1], [2], [3], [4] due to the added switch transistor and diode "on" losses. However, this unique converter demonstrates that with a simple inductor, a stepup/down converter with current limiting can be constructed.

REFERENCES

[1]. Florescu A., Radoi C., DC-DC Converter with Modern
Monolithic Control Circuits, Proceedings of 7th International Conference on Applied and Theoretical Electricity ICATE 2004, ISBN 973-8043-554-4, October 14-15, 2004, Baile Herculane, Romania, pp. 214-223
[2]. Florescu A., Switching Power Supply with Monolithic Switching Regulator Subsystems and DCDC Step-Up Converter, Proceedings of 4th International Symposium „, Advanced Topics in

Electrical Engineering" (ATEE 2004), ISBN 973-7728-31-9, November 25-26, 2004, Bucuresti, Romania, pp.249-262
[3]. Florescu A., Radoi C., Surse in comutatie realizate $с и$ convertor c.c.-c.c. cu raport de transformare oarecare, Proceedings of SNET'05, May 12-15, 2005, Bucuresti, Romania
[4]. Radoi C., Drogoreanu V., Grigore V., Florescu A., s.a., Electronica si Informatica Industriala. Aplicatii practice, Editura Tehnica, Bucuresti, 1997
[5]. ***ON Semiconductor Components Catalogue, April

2002

