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Abstract: In this paper are presented several translinear topologies suitable for static and 

dynamic analog signal processing in mixed-signal chips fabricated in digital CMOS 

technology and operated at very low supply voltage. The one or two variable objective 

functions that can be implemented with these translinear topologies, firstly are 

polynomial approximated and then are decomposed in continued products. Also, the 

objective functions do not contain time or frequency variables.  
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1. INTRODUCTION 

 
The existing CMOS technologies provide ample 

opportunity to integrate entire systems on to a single 

integrated circuit. To date, the ability to integrate 

large digital systems has far outweighed the ability to 

integrate the analog systems. The greatest 

impediment to analog CMOS VLSI design has been 

the inability to provide consistent circuit 

performance over the broad range of requirements 

for signal gain, frequency response, phase response, 

delay, power and signal fidelity imposed by analog 

designs. More, as the power supply voltage for 

integrated circuits continues to scale down, the 

analog design in mixed signal environments is 

becoming more difficult and challenging. Future 

analog circuits will have to operate successfully at 

supply voltages slightly higher than the MOS 

threshold voltage. 
 
So, the suitable topologies for signal processing at 

such low values of supply voltages are the translinear 

circuits because are operating in current domain and 

in this way the very small voltage swings are 

avoided. The MOS transistors have exponential 

current-voltage characteristics in weak inversion (or 

sub-threshold) region. Therefore in these circuits the 

MOS transistors will operate in this region. The main 

problems of this operating region are the relatively 

low speed capability and inferior matching. But these 

problems are relatively solved in sub-micron 

technology. 

 

In this paper are presented several CMOS translinear 

topologies that implement one or two variable 

objective functions, polynomial approximated and 

continued products decomposed. one or two variable 

objective functions. I choose polynomial 

approximation for objective functions because such 

function processing leads to implementations with 

relatively small number of devices, good stability 

and acceptable errors. 
  
 

2. MICROPOWER MOS TRANSISTORS IN 

WEAK INVERSION 
 

In above section was argued that the MOS transistor 

in low-voltage translinear circuits will operate in 

weak inversion. It is well known the general 

expression of drain current of MOS transistor: 
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where 

W, L width, length of the channel; 

Cox gate capacitance per unit area; 

µ  charge carrier mobility; 

iQ  induced mobile charge in channel; 

VD, VS drain, source voltages referred to the local 

substrate; 

V channel potential. 
 

This expression may be decomposed into: 
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where IF is called forward current (controlled by 

source voltage VS) and IR is called reverse current 

(controlled by drain voltage VD). 

In weak inversion we have: 
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where 

VP pinchoff voltage which is a nonlinear 

function of gate voltage VG and represents 

the body effect; 

VT thermal voltage ( qTk /⋅ ). 

Thus we have the following proportionality 
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and the drain current has the expression 
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or in terms of VGS and VGD as follows 
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where IS is specific current (limit of weak inversion). 

The specific current is proportional to W/L, follows 

explicitly shown 
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with ( )GVI ◊  the zero-bias ( 0=GSV ) current for a 

square transistor, which represents the body effect. 

So, the forward and reverse currents become: 
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If IR<<IF, then the MOS transistor is saturated, 

otherwise the MOS transistor is non-saturated. In 

figure 1.a are shown the two operation regions for 

weak inversion, which are defined by the ratios 

FD II /  and TDS VV / . 

 

Therefore, each of the drain current components 

(expressed by (9)) of a non-saturated transistor may 

be relate to an equivalent saturated transistor with 

gate-source voltage VGS and VGD respectively and the 

non-saturated transistor may be decomposed into two 

identical saturated transistors connected anti-parallel. 

This is symbolically shown in figure 1.b. The 

transistor that corresponds to reverse current 

component is shown in dashed line, and represents 

the effect of the non-saturated operation of the real 

transistor. This equivalence may be also applied to 

bipolar transistors, based on the Ebers-Moll model, 

but it is impractical because of asymmetry of real 

bipolar transistors.  
 
 

3. THE CMOS TRANSLINEAR 

IMPLEMENTATION OF POLYNOMIAL 

APPROXIMATED OBJECTIVE FUNCTIONS 
 

The objective-functions are first normalised, so that 

theirs variables to take values only in interval [-1, 1].  

Then the one variable normalises functions are 

approximated by the following methods: 

• MacLaurean that consist in truncating of 

MacLaurean series so that the maximum relative 

error of approximation to be 0.01% ÷ 0.1%. The 

functions obtained after approximation have the 

form: 
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• Chebyshev that consist in truncating of 

Chebyshev series so that the maximum relative error 

of approximation to be 0.01% ÷ 0.1%. The functions 

obtained after approximation have form: 
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where the coefficients ic are given by the formula: 
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Figure 1. a) The operation regions in weak inversion 

of the MOS transistor; b) Non-saturated Mos 

transistor equivalent to two saturated transistors 

connected anti-parallel. 
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 The ( )xTi  are the i grad Chebyshev polynomials 

determined by the relations: 

( ) 10 =xT  

( ) xxT =1  (14) 

( ) ( ) ( ) 1   ;2 11 ≥−⋅⋅= −+ nxTxTxxT nnn  

• Mini-max approximation or optimal polynomial 

approximation called that because the approximation 

polynomial is obtained after an optimization process 

by minimizing the maximum norm of the difference 

between function to be approximated and the 

polynomial approximation. 
 

The functions with two variables are approximated 

by truncated Taylor expansion. The resulting 

approximated polynomials have the form: 
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After approximation process, the approximated 

functions are decomposed in continued products. The 

one variable approximated function ( )xf a  become: 
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with Niqp ii ,0,and = , real parameters that may 

be determined from polynomial coefficients of 

approximated function. 

The two variable functions, that have the form (15), 

are arranged in the following way: 
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The functions ( )110 xf N
a , ( )220 xf N

a  and ( )22 xf N
ka  are 

decomposed in continued products and she will have 

the forms corresponding to relation (16). 

 

Therefore, for obtaining a translinear circuit which to 

realise a signal processing given by the one variable 

function, decomposed in the general form (16), the 

following set of equations must be implemented: 
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 The CMOS translinear expandable generic network 

that is implementing the equations (19) is shown in 

figure 2. It is very easy to see that in this network, all 

transistors, except Ti5 transistor of the current 

sources, are saturated, FR II <<  and therefore to 

good approximation we have: 
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For a minimum supply voltage, the current-source 

transistor Ti5 will be non-saturated. Therefore, in 

accordance with decomposition technique described 

in section two (see figure 1.b.), the fictitious 

transistors /
5iT  are added in order to account the non-

saturation of these transistors. In figure 3 it is shown 

a section i of proposed network in which the added 

transistor /
5iT  is shown dashed. From those presented 

in previous section, it follows that all shown network 

transistors can now be regarded as saturated.  
 

Next, applying the Kirchoff low to the translinear 

loop Ti1 - Ti4 (see figure 3) it is obtained the 

following expression: 
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But from (20) we have: 
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Figure 2. The CMOS translinear expandable generic network that implements the one variable polynomial 

approximated objective funtions. 



 

     

Figure 3. The i section of translinear generic network 

shown in figure 2. 
 

So, the translinear loop equation becomes: 
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It can see that the oppositely connected transistor 

pairs Ti1, Ti2 and Ti3, Ti4 have the same gate voltage: 
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It is follows that 
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and the equation (23) becomes a classical translinear 

relationship independent of the body effect. 

Assuming a constant rapport ,,1,/ NiLW ijij =  

3and28,1 ≠= jj  for the adequate loop transistors 

and for the transistors Ti2 and Ti3 a size ratio 

multiplied by ni, the equation (23) becomes: 

11
4231 Di

i

Di

i

DiDi I
n

I
n

II
⋅=⋅  (26) 

and after we substitute the drain current with proper 

values, the equation will has the form 

( ) iDiiii zIghz ⋅=⋅++ 21  (27) 

The drain current 2DiI  can be evaluated from the 

second translinear loop of network section Ti3 – /
i5T  

and Ti6: 
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But 
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and thus 

( ) ( )
( ) ( )43

/
56

GiGi

GiGi

VIVI
VIVI

◊◊

◊◊

=
=

 (30) 

The second transliniar loop equation become: 
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Applying the Kirchoff low in the connecting current 

source node yields: 
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Substituting the zi current expression from relation 

(27) yields 
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and the drain current IDi2 has the expression: 
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It can see that for to obtain the relations (19) the 

multiplier of size ratio nI must to come true the 

following relation: 
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and in this way the relation (27) becomes: 
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Implementation of the functions that are not 

continued on the all definition interval but are 

continued on the subintervals that covered integer 

definition interval and are polynomial approximated 

on these subintervals 
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it is realised like in figure 4. 

The network operates in a class A-B mode. It can see 

that the branch corresponded to the current source 

xx i −  of the Pi section is in conduction only that the 

normalised variable x becomes grater than xi. The 

oppositely connected branch (that corresponding to 

current source xx i −+1 ) of the same section is 

designed in such way so that when come in 

conduction, she turn off the first branch (that 

corresponding to current source xx i − ). In this way 

the value of z will be given by PI only for 

),( 1+∈ ii xxx . Unfortunately, this network can not 

operate at minimum supply voltage; she need a 

supply voltage about PV⋅3  for good operating. 

 



 

     

 

  

Figure 4. The network that is implementing polynomial approximated function that are not continued on the all 

definition interval but are continued on the subintervals that covered integer definition interval. 

 

Figure 5. The network that is implementing the polynomial approximated two variable functions. 

 

The two variables functions having the 

decomposition form (17) are implemented using the 

anterior presented networks for the one variable 

component functions (16) and supplementary 

networks that realised the appropriate products into 

the one variable polynomial function, as is illustrated 

in figure 5. The so obtained network is suitable for 

minimum voltage supply. 
 

As in previous network (shown in figure 2) the tail 

current-source transistors are non-saturated. The 

addition of fictitious transistors /
i8T  and /

i10T  (shown 

in dashed line) allows all transistors to be regarded as 

saturated. The circuit are three translinear loops: Ti1 – 

Ti6, next Ti3, Ti5, Ti7 and /
i8T  and finally Ti4, Ti6, Ti9 

and /
i10T , which are immune from the body effect. 

Assuming equal-sized transistors for the translinear 

loops, applying the Kirchoff low to those and using 

the relation (22) for gate-source voltage, the loop 

equations become: 

• for the first loop 
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Eliminating 21 and DiDi II  yields: 
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The expressions for the drain currents of transistors 

Ti1 and Ti2 are 
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for a well operating of network. 

 

We must pointed that the current-mode signals are 

natural for translinear circuits, but in the real-word 

systems voltage-signals are generally used and 

therefore voltage-current interfacing will be needed 

in practice. 

 
 

3. CONCLUSION 
    
The existing CMOS technologies provide ample 

opportunity to integrate entire systems on to a single 

integrated circuit. To date, the ability to integrate 

large digital systems has far outweighed the ability to 

integrate the analog systems. Future analog circuits 

will have to operate successfully at supply voltages 

slightly higher than the MOS threshold voltage. So, 

the suitable topologies for signal processing at such 

low values of supply voltages are the translinear 

circuits because are operating in current domain and 

in this way the very small voltage swings are 

avoided. 

 

In this paper are presented three translinear 

topologies suitable for static and dynamic analog 

signal processing in mixed-signal chips fabricated in 

digital CMOS technology and operated at very low 

supply voltage. First, it is presented a expandable 

generic translinear network that is implementing the 

polynomial approximated one variable functions that 

are continue in entire definition domain. The 

minimum value of supply voltage required for this 

circuit is given by the sum of the MOS transistor 

threshold voltage and the drain-source saturation 

voltage. The second network that is presented in this 

paper is implementing the polynomial approximated 

one variable functions that are not continue in entire 

definition domain. This network is operating in a 

class A-B mode and unfortunately, she can well 

operate only at a value of supply voltage about 

PV⋅3 . The last presented network is implementing 

the polynomial approximated two variable function. 

Like first network, this can operate at minimum value 

of supply voltage. Since the value of the supply 

voltage is low and the require of translinear principle 

to have a exponential I-V characteristic, the all 

transistors of these networks will operated in weak 

inversion. Therefore, bandwidth will be limited and 

the circuits will be sensitive to the threshold voltage 

matching.  

  

For the previous presented networks will be 

developed algorithms so that to be integrated to the  

TLSS synthesis program. The TLSS is a program in 

C++ code, realized by me in period 1999-2000, 

which permits the automatic synthesis of translinear 

circuits. Also, will be studied the bandwidth, noise 

and errors due to transistors mismatching and will try 

to correct them. 
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