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Abstract: This paper presents a procedure for time variant nonlinear system 
identification based on distribution theory. Some of the system parameters change in 
time according to unknown laws. These laws are expressed as finite degree time 
polynomials whose parameters are included in the set of parameters to be identified. 
Mainly it is an extension of the procedure developed in (Marin et al., 2005). 
Considering functionals weighted by polynomials, it is possible to transform a time 
variant differential system of equations to an algebraic system in unknown 
parameters. The hierarchical structure identification method for rational expressions, 
proposed in (Marin et al., 2005), is now extended to time variant systems. 
An application for parameter identification of a wastewater biodegradation process, 
considering time variant yield coefficients is presented.  
 
Keywords: Identification; Distribution theory; Functionals, Bioprocesses. 

 
 
 
 

1. INTRODUCTION 
 

As is presented in (Marin et al., 2005), progresses 
have been made in the area of continuous-time 
system identification. Many discussions, methods 
and results on continuous-time identification are 
presented in (Unbehanen and Rao, 1987), (Li and 
Billings, 2001), (Landau et al., 2001), (Sinh and Rao, 
1991), (Marin, 1992, 1993, 1999); (Bastogne et al., 
1997); (Hoverkamp et al., 1996), (Overschee and De 
Moor, 1996).  
A novel approach for continuous-time system 
identification is that based on distribution theory, 
using deterministic distributions (Marin, 2002) or 
random distributions (Ohsumi et al., 2002).  
Identification of the non-linear continuous-time 
systems is far away more complicated. The 
traditional procedures are based on the Volterra 
functional series (Schetzen, 1980), expressed in time 
domain (Boyd and Chua, 1985) or frequency domain 
(Li and Billings, 2001).  
The parameter identification of deterministic 
nonlinear continuous-time systems (NCTS), modeled 
by polynomial type differential equation, has been 

considered by numerous authors, (Pearson and Lee, 
1985), (Patra and Unbehauen, 1995).  
In (Marin et al., 2005), it is presented a method for 
identification of nonlinear continuous time systems 
(NCTS) considering that the unknown parameters 
can appear in rational relations with measured 
variables. Using techniques utilized in distribution 
approach (Marin 1992, 1993, 1999), the measurable 
functions and their derivatives are represented by 
functionals on a fundamental space of testing 
functions. Such systems are common in 
biotechnology (Bastin and Dochain, 1990), (Petre, 
2002), (Selişteanu et al., 2004).  
The main idea from (Marin et al., 2005) is to use a 
hierarchical structure of identification. First, some 
state equations are utilized to obtain a set of linear 
equations in some parameters. The results of this first 
stage of identification are utilized for expressing 
other parameters by linear equations. This process is 
repeated until all parameters are identified. 
In the present paper, the above idea of hierarchical 
identification has been extended to time variant 
systems.  



Variable parameters are modeled by finite degree 
time polynomials whose unknown coefficients are 
included in the set of parameters to be identified.  
To transform a differential time variant system of 
equations to an algebraic system of functionals, the 
so-called weighted distributions are considered. 
Weighted distributions are nothing else rather the 
product between time functions and distributions. 
The paper is organized as follows: The structure of a 
NCTS describing a wastewater biodegradation 
process is given in Section 2. Section 3, presents 
some aspects regarding weighted distributions and 
their derivatives. The problem statement of 
continuous time variant system identification is 
analyzed in Section 4, followed, in Section 5, by 
presenting the distribution approach of identification. 
The hierarchical structure of identification and 
estimation equations takes the space of Section 6. 
Some experimental results are presented in Section 
7, and conclusions in Section 8. 

 
 

2. MATHEMATICAL MODEL OF WASTE 
WATER BIODEGRADATION PROCESS 

 
Shall we consider, as in (Marin et al., 2005), the 
same system represented by the model of a 
wastewater treatment plant, but, assuming now that 
the values of some unknown parameters can modify 
in time. This is a biomethanation process of 
wastewater biodegradation, producing methane gas. 
Such reactions take place inside a continuous stirred 
tank bioreactors whose reduced mathematical models 
express two phases processes as presented in 
(Selişteanu et al., 2004), (Bastin and Dochain, 1990), 
(Petre, 2002). The following simplified reaction 
scheme is considered, 
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1 1 2 2 2 1;S X S S X P
φ φ

→ + → + ; (1) 
where: 1S  represents the glucose substrate, 2S  the 
acetate substrate, 1X  is the acidogenic bacteria, 2X  
the acetoclastic methanogenic bacteria and 1P  
represents the product, i.e. the methane gas. The 
reaction rates are denoted by 1 2,φ φ . 
The corresponding dynamical model,(Petre, 2002), is 
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where the state vector of the model is  
 1 1 2 1 1 1 2 3 4 5[ ] [ ]= =T TX S X S Pξ ξ ξ ξ ξ ξ  (3) 
whose components are concentrations in (g/l).  
The parameters 1 2 3 4, , ,k k k k are the so-called yield 
coefficients. 
In this paper, we consider that the first two yield 
coefficients change in time, that means, 
 1 1 2 2( ), ( )= =k k t k k t  

The reaction rates are nonlinear functions of the state 
components, expressed as 
 1 2( ) [ ( ) ( )]Tφ φ ξ φ ξ φ ξ= = . (4) 
The vector of feed rates and of rates of removal of 
components is denoted 
 1[0 0 0 ]= ⋅ − T

inF D S Q  (5) 
where, D is the dilution rate, a scalar in this 
particular case, inS  represents the concentration of 
the externally influent substrate–glucose, 1Q  is the 
methane gas outflow rate. 
The dynamical model (2) can be compactly written  

 ( ) ( )= ⋅ − ⋅ +
d K t D F
dt
ξ φ ξ ξ . (6) 

In fact, this model describes the behavior of an entire 
class of biotechnological processes. It referees as the 
general dynamical state-space model of this class of 
bioprocesses (Bastin and Dochain, 1990). In (6), 

( )K t is the matrix of the yield coefficients ijk  
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The reaction rates for this process are given by the 
Monod law  
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and the Haldane kinetic model 
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where 
1 2
,M MK K  are Michaelis-Menten constants; 

1 2,µ µ  represent specific growth rates coefficients 
and iK  is the inhibition constant. 
Because variation speed of 1 2( ), ( )k t k t is not so high, 
their time law variation is locally approximated by 
straight lines 
 1 11 10 1 11 10( ) , [ , ]= ⋅ + =k t tθ θ θ θ θ  (10) 
 2 21 20 2 21 20( ) , [ , ]= ⋅ + =k t tθ θ θ θ θ  (11) 
It is considered that all parameters 11 10 21 20, , ,θ θ θ θ are 
constant during the time intervals when identification 
is performed. During these time intervals, different 
functionals representing distributions are evaluated 
to obtain a final result. 
In such way, the time curves (10), (11) are piece 
wise approximated by straight lines. 
For simplicity, all parameters characterizing the plant 
are gathered in a single vector 
 11 10 21 20 3 4 5 6 7 8 9[ ]= Tθ θ θ θ θ θ θ θ θ θ θ θ , (12) 
where 
 3 3 4 4;= =k kθ θ ; 5 1 6 2;= =θ µ θ µ ; (13) 
 

1 27 8 9; ;= = =M M iK K Kθ θ θ . (14) 
Because the dilution rate D can be externally 
modified, it will be considered as the third 
component of the input vector, 1 2 3[ ]= Tu u u u . 
The other two components of u  are the 
concentration inS  and the methane gas outflow 1Q  



 1 2 1 3; ;= = =inu S u Q u D . (15) 
Written explicitly by components, the state equations 
(2) or (6), within the above notations, takes the form, 
 1 1 3 1uξ φ ξ= − ⋅&  (16) 
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 3 2 3 3uξ φ ξ= − ⋅&  (19) 
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 4 21 20 1 3 2 3 4( )= ⋅ + ⋅ − ⋅ − ⋅& t uξ θ θ φ θ φ ξ  (21) 

 5 3 5 4 2 2u uξ ξ θ φ= − ⋅ + ⋅ −&  (22) 
 
 

3. WEIGHTED DISTRIBUTIONS AND THEIR 
DERIVATIVES 

 
Let us denote by nΦ  the fundamental space from 
distribution theory (Kecs et al. 1975), of the real 
fundamental functions,  
 : , ( )t tϕ ϕ→ → , (23) 
with compact support T , having continuous 
derivatives at least up to the order n . The linear 
space nΦ  is organized as a topological space 
considering the norm, 
 ( ) ( )

0 k n0 k n, t t
|| || | ( ) | { | ( ) | }sup supmax

≤ ≤≤ ≤ ∈ ∈
= =k k

n
T T

t tϕ ϕ ϕ .(24) 

A distribution is a linear, continuous (in the above 
topology) real functional on nΦ , 
 : , ( )nF Fϕ ϕΦ → → ∈  (25) 
Let  : , ( )q t q t→ →     (26) 
be a function that admits a Riemann integral on any 
compact interval T from . Using this function, a 
unique distribution  

: , ( )q n qF Fϕ ϕΦ → → ∈    (27) 
can be built by the relation 
 ( ) ( ) ( ) ,q nF q t t dtϕ ϕ ϕ= ⋅ ⋅ ∀ ∈Φ∫ . (28) 

Considering, at least, 0C ( )q∈ , the following 
important equivalence take place (Barbu, 1985), 
 ( ) 0, ( ) 0,q nF q t tϕ ϕ= ∀ ∈Φ ⇔ = ∀ ∈ . (29) 
Let  
 : , ( ) , C ( ),→ → ∈ ∈n

j j jt t j Jρ ρ ρ  (30) 
be a set of continuous time functions.  
The product between a function (30), jρ , and a 
distribution (27), qF , is a new distribution (Kecs et 
al. 1975), 
 : , ( ) ,= ⋅ Φ → → ∈ ∈j j

q j q n qF F F j Jρ ρρ ϕ ϕ  
  (31) 
built through the relation 
 ( ) ( ) ( ) ( ) ,= ⋅ ⋅ ⋅ ∀ ∈Φ∫j

q j nF t q t t dtρ ϕ ρ ϕ ϕ  (32) 

Under this interpretation, a single function q  

generates a family of distributions , ∈j
qF j Jρ on Φn . 

Let us denote by /
nΦ  the dual space of nΦ , which 

means the set of all distributions defined on nΦ .  
Because ϕ  from (23), (24) has a finite compact 
support and all functions ,∀ ∈j j Jρ of (30) are 
continuous with derivatives at least up to the order n  
then the functions  
 ,= ⋅ ∈Φ ∀ ∈

j j n j Jρϕ ρ ϕ ,  (33) 

are testing functions on Φn , where 
 ( ) ( ) ( ) , ,= ⋅ ∀ ∈ ∀ ∈

j jt t t t j Jρϕ ρ ϕ . (34) 
If q  is a linear combination of continuous time 
weighted functions ( ) ( ) , 1: ,⋅ = ∈j it q t i p j Jρ  then 
the distribution qF on nΦ  is a linear combination, on 

the same space /
nΦ , of the weighted distributions 

, ∈j

iqF j Jρ , generated by the components iq , and 

the family of weighting functions , ∈j j Jρ  
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  (37) 
where, 
 ( ) ( ) ( ) ,= ⋅ ⋅ ∀ ∈Φ∫iq i nF q t t dtϕ ϕ ϕ . (38) 

The notion of distribution k-order derivative, 
0 :k n= ,(Kecs et al. 1975), is now directly extended 

to weighted distributions.  
If /∈Φj

q nF ρ , jρ  of (30), then its k-order derivative, 

≤k n , is a new distribution, ( ) /∈Φj k
q nF ρ uniquely 

defined by the relations,  
 ( ) ( )( ) ( 1) ([ ] ),= − ⋅ ⋅ ∀ ∈Φj k k k

q q j nF Fρ ϕ ρ ϕ ϕ  (39) 
where 
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is the k-order ( 0 :k n= ) time derivative of the 
testing function = ⋅ ∈Φ

j j nρϕ ρ ϕ , and 
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Taking into account (40), (39) can be expressed as 
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where, 
( ) ( )( ) ( ) [ ( ) ( )]→ = ⋅ ⋅ ⋅ ∈∫
i

j i
q jF q t t t dtρϕ ϕ ρ ϕ  (44) 



is a weighted distribution generated by  function q . 

When ( )kq C∈ ,then ( )
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k
k

q q
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k
k k

q jq
F F q t t t dtρ ρϕ ϕ ρ ϕ= = ⋅ ⋅∫  (45) 

that means the k-order derivative of a weighted 
distribution generated by a function C ( )kq∈  
equals to the weighted distribution generated by ( )kq , 
the k-order time derivative of the function q  ,  

 ( ) ( ) ( ): , ( )
k

k k
k

d q tq t q t
dt

→ → = . (46) 

If C ( )kq∈ , from (39), (45) one can write, 

nϕ∀ ∈Φ  
( ) ( )( ) ( ) ( ) ( )= ⋅ ⋅ ⋅ =∫j k k

q jF q t t t dtρ ϕ ρ ϕ  (47) 
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=
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k
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j n
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q t t t dtρ ϕ ϕ  

For example, ( ) = ⇒j t tρ     (48) 
( ) ( ) 1 ( 1)( ) ( 1) [ ( ) ( )],−= − ⋅ + ⋅ ∀ ∈Φt k k t k k

q q q nF F k Fϕ ϕ ϕ ϕ  
 
 

4. PROBLEM STATEMENT OF CONTINUOUS 
TIME VARIANT SYSTEM IDENTIFICATION 

 
Let us consider a dynamical continuous time variant 
system with un  inputs,  

 : , ( ) ,unu t u t u→ → ∈Ω  (49) 
and yn outputs,  

 : , ( ) ,yny t y t y→ → ∈Γ  (50) 
where Ω  represents the set of admissible inputs and 
Γ is the set of possible outputs. 
It can be expressed by a differential operator, 
 /( , ) ( , , , )=u yq Q u y tθ θ  (51) 
whose expression depends on a vector of parameters 
 1[ ... ... ]T

i pθ θ θ θ= . (52) 
A triple ( *, *, *)u y θ is a realization of the model if 
the function  
 */( *, *) ( *, *, , *)=u yq Q u y tθ θ  (53) 
is the zero function,  */( *, *) 0u yqθ = that means,  

*/( *, *) ( ) ( *( ), *( ), , *) 0,= = ∀ ∈u yq t Q u t y t t tθ θ . (54) 
The value *θ θ= is consistent with the model (53) if 
and only if the two following conditions are 
accomplished: 
1. Covering condition 

*/( , ) ( ) ( ( ), ( ), *) 0, , ( , )u yq t Q u t y t t u yθ θ= = ∀ ∈ ∀ ∈Ω×Γ (55) 
2. Uniqueness condition 
 /( , ) ( ) 0, , ( , ) *u yq t t u yθ θ θ= ∀ ∈ ∀ ∈Ω×Γ⇒ =  (56) 
A special case is the model (51) expressing a linear 
relation in the parameters 

/( , )
1

( , , , )
=

= = ⋅ − = ⋅ −∑
p

T
u y i

i

q Q u y t w v w vθ θ θ θ , (57) 

where iw  and v  represent a sum of the time 
weighted derivatives of some known, possible 
nonlinear, functions j

iψ , 0
jψ , with respect to the 

input and output variables, 
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p
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j

w t u y i pρ ψ , (58) 
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j

p
nj j

j

v t u yρ ψ . (59) 

The weighting functions ( ), 0 : , 1:= =j
i it i p j pρ are 

given time functions, depending how the time 
variation of the coefficients is parameterized.  
In this paper, considering parameterization by 
polynomials, these functions are of the form 
 ( ) , 0 : , 1:= = =

j
imj

i it t i p j pρ . (60) 
Parameters 0 0, , , ,j j j

i i ip n p n m  are given integer 
numbers. The identification problem, into condition 
(57), has a unique solution. At any time instant t, for 
a measured input-output pair of functions ( , )u y  the 
value of the function /( , ) ( )u yq tθ  is a real vector 
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T
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q t w t v t w t v tθ θ θ
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= ⋅ − = ⋅ −∑ (61) 

where  
 1( ) [ ( ),..., ( ),..., ( )]=T

i pw t w t w t w t , 
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p
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Practically, it is possible to record the functions 
( , )u y in the time interval T ⊂  only, called 
observation time interval or just time window. The 
restriction of the functions ( , )u y to the time interval 
T is denoted by ( , )T Tu y  respectively. If no confusion 
would appear, then we may drop the subscript T . 
 
As in (Marin et al., 2005), an identification problem 
means to determine the parameterθ θ= , given the 
priori information on the model structure Q , (51), 
and the observed input-output pair ( , )T Tu y ,  

 ( , , )T Tu y Qθ θ=  (64) 
in a such a way that,  
 /( , ) ( ) 0,

T Tu yq t tθ = ∀ ∈  (65) 

This condition involves,  
 /( , ) ( ) 0, , ( , )u yq t t u yθ = ∀ ∈ ∀ ∈Ω×Γ  (66) 

for any input-output pair ( , )u y  observed to that 
system. As the unknown parameter θ  has a finite 
number p  of components, then it will be enough to 
choose (utilize) a finite number N of time 
instants, , 1:it i N=  based on which to create an 
algebraic equation. In the specific case of (48), this is 
a linear system 
 θ⋅ =W v  (67) 



where W  is a N p× matrix of real numbers, 
 1[ ( ) ;..; ( ) ;..; ( ) ]T T T

i Nw t w t w t=W , (68) 
whose i-th row ( 1:i N= ) is, 
 1( ) [ ( ),.., ( ),.., ( )]T

i i k i p iw t w t w t w t=  (69) 
The symbol v  denotes a N  column real vector, 
 1[ ( ),.., ( ),.., ( )]T

i Nv t v t v t=v . (70) 
Let us denote ( )r rank= W . If r p= , then a unique 
solution is obtained, 
 1 *( )T T vθ θ−= ⋅ ⋅ ⋅ =W W W  (71) 
The equation (71) is of no practical interest because 
it is not recommended to measure (or to estimate) the 
derivatives of signals, mainly when they are noise 
contamined.  
 
 

5. DISTRIBUTION APPROACH OF TIME 
VARIANT SYSTEM IDENTIFICATION 

 
Now let us consider known the set of continuous 
time scalar functions (62), (63) 
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  (73) 
The function ( )iw t  from (72) generates a distribution 
 : , ( )Φ → →

i iw n wF Fϕ ϕ  (74) 
as a sum of weighted distributions, 
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where  
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They constitute the row vector, 

1
( ) [ ( ),..., ( ),..., ( )]

i p

T p
w w w wF F F Fϕ ϕ ϕ ϕ= ∈ . (78) 

Also, the function ( )v t  from (73) generates a 
distribution 
 : , ( )Φ → →v n vF Fϕ ϕ  (79) 
as a weighted distribution, 
 0
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j

jnjv
t

F F ρ

ψ
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j j jk

j
n k n kj j k

t
F t t dtρ

ψ
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Into this conditions, any input-output pair ( ,u y ) 
observed from the system (51) is described by a pair 
of regular distribution ( ,w vF F ) for any nϕ ∈Φ .  
In such a way, the problem of identification 
regarding the parameters of the real system (51) can 
be represented by distributions. For example, the 
regular distribution generated by the continuous 
function /( , )u yqθ from (51), into the specific case of 
(61) is related to the parameter vector θ  as 

 
θ θ /( , )

1

( ) ( ) ( ) ( )
i

p

q q u y w i v
i

F F F Fϕ ϕ ϕ θ ϕ
=

= = ⋅ − =∑  

 ( ) ( ),T
w y nF Fϕ θ ϕ ϕ= ⋅ − ∈Φ  (84) 

If a triple ( *, *, *)u y θ is a realization of the model 
(51), then the identity (85) takes place, 
 

θ* θ* /( *, *)( ) ( ) 0,q q u y nF Fϕ ϕ ϕ= = ∀ ∈Φ  (85) 

and vice versa, if an input-output pair ( *, *)u y  of the 
family of models (51), with unknown parameter θ , 
generates a distribution  

 
θ θ /( *, *)

1

( ) ( ) ( ) ( )
i

p

q q u y w i v
i

F F F Fϕ ϕ ϕ θ ϕ
=

= = ⋅ −∑  (86) 

which satisfies 
 

θ θ /( *, *)( ) ( ) 0,q q u y nF Fϕ ϕ ϕ= = ∀ ∈Φ , (87) 

then *θ θ= . 
As θ  has p components it is enough a chose (utilize) 
a finite number N p≥  of fundamental function 

, 1:i i Nϕ =  and to build an algebraic equation, 
 w vθ⋅ =F F  (88) 
where wF  is an ( N p× ) matrix of real numbers 
 1[ ( );...; ( );...; ( )]T T T T

w w w i w NF F Fϕ ϕ ϕ=F  (89) 
where i-th row ( )T

w iF ϕ  is given by (78).  
The symbol vF denotes an N -column real vector 
built from (80)-(83), 
 1[ ( ),..., ( ),..., ( )]T

v v v i v NF F Fϕ ϕ ϕ=F . (90) 
When only the restriction ( ,T Tu y ) of the pair ( ,u y ) 
on the time interval T , is available, then one must 
chose iϕ  such that 
 isupp( ) , 1:T i Nϕ ⊂ ⊂ =  (91) 
If ( )wr rank p= =F  , then a unique solution  
is obtained. 
 1( ) *T T

w w w vθ θ−= ⋅ ⋅ ⋅ =F F F F  (92) 
 
 

6. THE HIERARCHICAL STRUCTURE OF 
IDENTIFICATION AND ESTIMATION 

EQUATIONS 
 
The procedure of hierarchical structure identification 
developed in (Marin et al., 2005) is retaken here 
considering time variant coefficients (10) and (11). 
To obtain linear equations in unknown parameters, 
the identification problem is split in several simpler 



interlinked identification problems called 
identification layers. 
Based on the specific structure of this system, it is 
possible to group the state equations, in such way to 
determine five interconnected identification 
problems of the type (92), labeled Layer_*, *=a, b, c, 
d, e. They are organized in a hierarchical structure. 
First, in Layer_a, some state equations are utilized to 
obtain a set of linear equations in some parameters. 
The results of this first stage of identification are 
utilized for expressing other parameters by linear 
equations in Layer_b. This process is repeated in the 
other layers until all parameters are identified. For 
each identification layer, the same type of procedures 
and numerical algorithms are applied.  
Layer_a:Identification of 11 10 1 11 10[ , ], ( )t tθ θ θ θ θ= ⋅ +   
Substituting expression 1φ  from (16) into (18) we 
obtain, the Layer_a model (51) 

/( , ) 1 3 1 11 10 2 3 2 1 3( )[ ] ( )= + ⋅ ⋅ + − − − ⋅ + ⋅a
u yq u t u u uθ ξ ξ θ θ ξ ξ  (93) 

characterized by 
 1 2 11 10[ ] [ ] , 2= = =a a a apθ θ θ θ θ  

1

2
( )(1) (0)

1 1 3 1 1 1
1

( ) [ ] [ ] ( ) [ ( )]
jna j j

j

w t t t u t tξ ξ ρ ψ
=

= ⋅ + ⋅ ⋅ = ⋅∑  

2

2
( )(1) (0)

2 1 3 1 2 2
1

( ) 1 [ ] 1 [ ] ( ) [ ( )]
jna j j

j

w t u t tξ ξ ρ ψ
=

= ⋅ + ⋅ ⋅ = ⋅∑  

(1) (0) (0)
2 3 2 1 3( ) 1 [ ] 1 [ ] 1 [ ]av t u u uξ ξ= ⋅ − + ⋅ − ⋅ + ⋅ ⋅  

0

3
( )

0 0
1

( ) ( ) [ ( )]
jna j j

j

v t t tρ ψ
=

= ⋅∑  

1

(1) (0)
1 1( ) [ ( )] ( ) [ ( )] 1 ( )a

wF t t t dt t t dtϕ ξ ϕ ξ ϕ= − ⋅ ⋅ + − ⋅ ⋅ +∫ ∫  

 (0)
3 1[ ( ) ( )] ( )u t t t t dtξ ϕ+ ⋅ ⋅∫  

2

(1) (0)
1 3 1( ) [ ( )] 1 ( ) [ ( ) ( )] 1 ( )a

wF t t dt u t t t dtϕ ξ ϕ ξ ϕ= − ⋅ ⋅ + ⋅ ⋅∫ ∫
 

1 2

, ( ) [ ( ) ( )]a T a a
w w wF F Fϕ ϕ ϕ=  

Also, 
(1)

2( ) [ ( )] 1 ( )a
vF t t dtϕ ξ ϕ= ⋅ ⋅ +∫  

(0) (0)
3 2 1 3[ ( ) ( )] 1 ( ) [ ( ) ( )] 1 ( )u t t t dt u t u t t dtξ ϕ ϕ+ − ⋅ ⋅ + ⋅ ⋅∫ ∫

 , , ,
1[ ( );...; ( );...; ( )]a

a a T a T a T T
w w w i w N

F F Fϕ ϕ ϕ=F   

 1[ ( ),..., ( ),..., ( )]a
a a a a T
v v v i w N

F F Fϕ ϕ ϕ=F  

 , 1 ,( )a a T a a T a
w w w vθ −= ⋅ ⋅ ⋅F F F F  (94) 

 11 1 10 2 1 11 10; , ( )a a t tθ θ θ θ θ θ θ= = = ⋅ +
) ) ) ) ) ) )

 (95) 
Layer_b: Identification of 5 7,θ θ .  
Considering known  
 1 1 11 10( ) ( )t t tθ θ θ θ= = ⋅ +

) ) )
 (96) 

from the Layer_a, and substituting (17), equation 
(18) becomes, 

 1 2
2 1 5 3 2 1 3

7 2

( )t u u uξ ξξ θ θ ξ
θ ξ

⋅
= − ⋅ ⋅ − ⋅ + ⋅

+

)
&  

The Layer_b model (40) is now, 
 /( , ) 1 2 1 5 2 3 2 1 3 7( ( )) ( )b

u yq t u u uθ ξ ξ θ θ ξ ξ θ= ⋅ ⋅ ⋅ + + ⋅ − ⋅ ⋅ −  

 2
2 2 3 2 1 3 2( )u u uξ ξ ξ ξ− − ⋅ − ⋅ + ⋅ ⋅  (97) 

characterized by 
 1 2 5 7[ ] [ ] , 2b b b bpθ θ θ θ θ= = =  

 (0)
1 1 2 1( ) [ ( )]bw t tξ ξ θ= ⋅ ⋅  

 (1) (0) (0)
2 2 3 2 1 3( ) [ ] [ ] [ ]bw t u u uξ ξ= + ⋅ − ⋅  

 2 (1) 2 (0) (0)
2 3 2 1 3 2

1( ) [ ] [ ] [ ]
2

bv t u u uξ ξ ξ= − + − ⋅ + ⋅ ⋅  

 
1

(0)
1 2 1( ) [ ( ) ( ) ( )] ( )b

wF t t t t dtϕ ξ ξ θ ϕ= ⋅ ⋅ ⋅ ⋅∫  

 
2

(1) (0)
2 3 2( ) [ ( )] ( ) [ ( ) ( )] ( )b

wF t t dt u t t t dtϕ ξ ϕ ξ ϕ= − ⋅ ⋅ + ⋅ ⋅ ⋅ +∫ ∫  

 (0)
1 3[ ( ) ( )] ( )u t u t t dtϕ+ − ⋅ ⋅ ⋅∫  

 
1 2

, ( ) [ ( ) ( )]b T b b
w w wF F Fϕ ϕ ϕ=  

Also, 

 2 (1)
2

1( ) [ ( )] ( )
2

b
vF t t dtϕ ξ ϕ= ⋅ ⋅ ⋅ +∫  

 2 (0)
3 2[ ( ) ( )] ( )u t t t dtξ ϕ+ − ⋅ ⋅ ⋅ +∫  

 (0)
1 3 2[ ( ) ( ) ( )] ( )u t u t t t dtξ ϕ+ ⋅ ⋅ ⋅ ⋅∫  

 , , ,
1[ ( );...; ( );...; ( )]b

b b T b T b T T
w w w i w N

F F Fϕ ϕ ϕ=F  

 1[ ( ),..., ( ),..., ( )]b
b b b b T
v v v i w N

F F Fϕ ϕ ϕ=F  
 
 , 1 ,( )b b T b b T b

w w w vθ −= ⋅ ⋅ ⋅F F F F  (98) 

 5 1 7 2;b bθ θ θ θ= =
) ) ) )

 (99) 
Layer_c:Identification of 21 20 3, ,θ θ θ  
 2 21 20( )t tθ θ θ= ⋅ +  (100) 

Considering known 5 5 7 7;θ θ θ θ= =
) )

 from the Layer_b 

the estimated expression 1φ
)

, of the rational 1φ , is 

 1 2
1 5

7 2

ξ ξ
φ θ

θ ξ
⋅

= ⋅
+

) )
)  (101) 

whose time expression is 

 1 2
1 5

7 2

( ) ( )
( )

( )
t t

t
t

ξ ξ
φ θ

θ ξ
⋅

= ⋅
+

) )
) . 

Substituting expression 2φ  from (19) and (101) 
instead of 1φ into (21) we obtain,  

 4 21 20 1 3 3 3 3 3 4[ ] [ ]t u uξ θ θ φ θ ξ ξ ξ= ⋅ + ⋅ − ⋅ + ⋅ − ⋅
)

& &  
which determines the Layer_c model (51) 

/( , ) 1 21 1 20 3 3 3 3( ) ( ) ( )c
u yq t uθ φ θ φ θ ξ ξ θ= ⋅ ⋅ + ⋅ + − − ⋅ ⋅ −  

 4 3 4( )uξ ξ− + ⋅  (102) 
characterized by 
 1 2 3 21 20 3[ ] [ ] , 3c c c c cpθ θ θ θ θ θ θ= = =  

 (0)
1 1( ) [ ]cw t t φ= ⋅  

 (0)
2 1( ) [ ]cw t φ=  

 (1) (0)
3 3 3 3( ) [ ] [ ]cw t uξ ξ= − + − ⋅  

 (1) (0)
4 3 4( ) [ ] [ ]cv t uξ ξ= − + ⋅  

 
1

(0)
1( ) [ ( )] ( )c

wF t t t dtϕ φ ϕ= ⋅ ⋅ ⋅∫  



 
2

(0)
1( ) [ ( )] ( )c

wF t t dtϕ φ ϕ= ⋅ ⋅∫  

 
3

(1) (0)
3 3 3( ) [ ( )] ( ) [ ( ) ( )] ( )c

wF t t dt u t t t dtϕ ξ ϕ ξ ϕ= ⋅ ⋅ + − ⋅ ⋅ ⋅∫ ∫  

 
1 2 3

, ( ) [ ( ) ( ) ( )]c T c c c
w w w wF F F Fϕ ϕ ϕ ϕ=  

Also, 
 (1)

4( ) [ ( )] ( )c
vF t t dtϕ ξ ϕ= − ⋅ ⋅ +∫  

 (0)
3 4[ ( ) ( )] ( )u t t t dtξ ϕ+ ⋅ ⋅ ⋅∫  

 , , ,
1[ ( );...; ( );...; ( )]c

c c T c T c T T
w w w i w N

F F Fϕ ϕ ϕ=F   

 1[ ( ),..., ( ),..., ( )]b
c c c c T
v v v i w N

F F Fϕ ϕ ϕ=F  

 , 1 ,( )c c T c c T c
w w w vθ −= ⋅ ⋅ ⋅F F F F  (103) 

 21 1 20 2 3 3; ;c c cθ θ θ θ θ θ= = =
) ) ) ) ) )

 (104) 

 2 21 20( )t tθ θ θ= ⋅ +
) ) )

 (105) 
Layer_d: Identification of /

6 8 9, ,θ θ θ .  

Considering known  2 2 3 3( ) ,tθ θ θ θ= =
) )

 from the 
Layer_c, and substituting (20) in equation (21) where 

1φ is replaced by 1φ
)

we obtain, 

 3 4
4 2 1 3 3 4' 2

8 4 9 4

( )t uξ ξξ θ φ θ ξ
θ ξ θ ξ

⋅
= ⋅ − ⋅ − ⋅

+ + ⋅

) ) )
&  

The Layer_d model (51) is now, 

/( , ) 3 4 3 6 4 3 4 2 1 8( ) ( ( ) )d
u yq u tθ ξ ξ θ θ ξ ξ θ φ θ= ⋅ ⋅ ⋅ + + ⋅ − ⋅ ⋅ +  

 2 3 2 /
4 4 3 4 2 1 4 9( ( ) )u tξ ξ ξ θ φ ξ θ+ ⋅ + ⋅ − ⋅ ⋅ ⋅ −  

 2
4 4 3 4 2 1 4( ( ) )u tξ ξ ξ θ φ ξ− − ⋅ − ⋅ + ⋅ ⋅  (106) 

characterized by 
 /

1 2 3 6 8 9[ ] [ ] , 3d d d d dpθ θ θ θ θ θ θ= = =  

 (0)
1 3 4 3( ) [ ]dw t ξ ξ θ= ⋅ ⋅  

 (1) (0) (0)
2 4 3 4 2 1( ) [ ] [ ] [ ( ) ]dw t u tξ ξ θ φ= + ⋅ + − ⋅  

 3 (1) 3 (0) 2 (0)
3 4 3 4 2 1 4

1( ) [ ] [ ] [ ( ) ]
3

dw t u tξ ξ θ φ ξ= + ⋅ + − ⋅ ⋅  

 2 (1) 2 (0) (0)
4 3 4 2 1 4

1( ) [ ] [ ] [ ( ) ]
2

dv t u tξ ξ θ φ ξ= − + − ⋅ + ⋅ ⋅  

 
1

(0)
3 4 3( ) [ ( ) ( ) ] ( )d

wF t t t dtϕ ξ ξ θ ϕ= ⋅ ⋅ ⋅ ⋅∫  

 
2

(1) (0)
4 3 4( ) [ ( )] ( ) [ ( ) ( )] ( )d

wF t t dt u t t t dtϕ ξ ϕ ξ ϕ= − ⋅ ⋅ + ⋅ ⋅ ⋅ +∫ ∫  

 (0)
2 1[ ( ) ( )] ( )t t t dtθ φ ϕ+ − ⋅ ⋅ ⋅∫  

 
1 2 3

, ( ) [ ( ) ( ) ( )]d T d d d
w w w wF F F Fϕ ϕ ϕ ϕ=  

Also, 

 2 (1)
4

1( ) [ ( )] ( )
2

d
vF t t dtϕ ξ ϕ= ⋅ ⋅ ⋅ +∫  

 2 (0)
3 4[ ( ) ( )] ( )u t t t dtξ ϕ+ − ⋅ ⋅ ⋅ +∫  

 (0)
2 1 4[ ( ) ( ) ( )] ( )t t t t dtθ φ ξ ϕ+ ⋅ ⋅ ⋅ ⋅∫  

 , , ,
1[ ( );...; ( );...; ( )]d

d d T d T d T T
w w w i w N

F F Fϕ ϕ ϕ=F  

 1[ ( ),..., ( ),..., ( )]d
d d d d T
v v v i w N

F F Fϕ ϕ ϕ=F  

 , 1 ,( )d d T d d T d
w w w vθ −= ⋅ ⋅ ⋅F F F F  (107) 

 / /
6 1 8 2 9 3 9 9; ; 1/d d dθ θ θ θ θ θ θ θ= = = ⇒ =
) ) ) ) ) ) ) )

 (108) 
Layer_e: Identification of 4θ  

Considering known / /
6 6 8 8 9 9; ;θ θ θ θ θ θ= = =

) ) )
, from 

the Layer d identification, the estimated expression 

2φ
)

, of the nonlinear function 2φ , is 

 3 4
2 6 / 2

8 4 9 4

ξ ξ
φ θ

θ ξ θ ξ
⋅

= ⋅
+ + ⋅

) )
)  (109) 

whose time expression is 

 3 4
2 6 / 2

8 4 9 4

( ) ( )
( ) ( )
t t
t t

ξ ξ
φ θ

θ ξ θ ξ
⋅

= ⋅
+ + ⋅

) )
) . 

Substituting expression (109) instead of 2φ into (22),  

 5 3 5 4 2 2u uξ ξ θ φ= − ⋅ + ⋅ −
)

&  
which determines the Layer_e model (40) 
 /( , ) 2 4 5 3 5 2( ) ( )e

u yq u uθ φ θ ξ ξ= ⋅ − + ⋅ +  (110) 
characterized by 
 1 4[ ] [ ] , 1e e epθ θ θ= = =  

 (0)
1 2( ) [ ]ew t φ= ; (1) (0) (0)

5 3 4 2( ) [ ] [ ] [ ]ev t u uξ ξ= + ⋅ +  

 
1

(0)
2( ) [ ( )] ( )e

wF t t dtϕ φ ϕ= ⋅ ⋅∫ ; 
1

, ( ) [ ( )]e T e
w wF Fϕ ϕ=  

Also, 
 (1)

5( ) [ ( )] ( )e
vF t t dtϕ ξ ϕ= − ⋅ ⋅ +∫  

 (0) (0)
3 5 2[ ( ) ( )] ( ) [ ( )] ( )u t t t dt u t t dtξ ϕ ϕ+ ⋅ ⋅ ⋅ + ⋅ ⋅∫ ∫  

 , , ,
1[ ( );...; ( );...; ( )]e

e e T e T e T T
w w w i w N

F F Fϕ ϕ ϕ=F  

 1[ ( ),..., ( ),..., ( )]e
e e e e T
v v v i w N

F F Fϕ ϕ ϕ=F  

 , 1 ,( )e e T e e T e
w w w vθ −= ⋅ ⋅ ⋅F F F F  (111) 

 4 1
eθ θ=

) )
 (112) 

 
 

7. EXPERIMENTAL RESULTS 
 
All Matlab programs developed in (Marin et al., 
2005) for time invariant systems have been extended 
to the time variant systems according the above 
relations. 
Because of limited space, here we include practical 
results only for a first order nonlinear time variant 
system characterized by rational dependence on 
parameters,  

 3
1

2

( ) ( )( ) ( )
( )

t u ty t y t
y t

θθ
θ

⋅
= ⋅ +

+
&  (113) 

where  
 3 31 30( )t tθ θ θ= ⋅ +  (114) 
The vector of unknown parameters to be identified is 
 1 2 31 30[ ]θ θ θ θ θ= . (115) 
This simple model corresponds somehow to the 
Layer a presented above. It has been utilized testing 
functions ( )tϕ , characterized by a bounded support 

[ , ],a b a bT t t t t= < , accomplishing the conditions 
 ( ) 0tϕ = , ( , ] [ , )a bt t t∀ ∈ −∞ ∪ ∞ .  
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 ( ) ( , ) ( , , )a b a bt t t t t tϕ α β= ⋅ ⋅Ψ  
where  4( , , ) sin [ ( ) / ( ) ]a b b b at t t t t t tπΨ = ⋅ − −  
α is a scaling factor and . 

 ( , ) 1/ ( , , ) , ,b

a

t

a b a b a bt
t t t t t t tβ = Ψ ∀∫  

to assure a normalized area. 
Figure 1. shows the time variation of unknown 
coefficients. Two of them are constant 1 1 0.9aθ = = − ; 

2 2 2aθ = = , and the third is a sequence of four lines 
 3 3 31 30( ) ( )t a t tθ θ θ= = ⋅ +  
 
 
 
 
 
 
 
 
 
Fig. 1. Time variation of unknown parameters 
 
The measured input-output variables, for the free 
noise case, are depicted in Figure 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. Time variation of measured input-output 

variables. 
 
For the first three slopes, the measured variables and 
identification results are presented as follows: 
 
 
 
 
 
 
 
 
 
 
Fig. 3. Time variation of measured input-output 

variables for the first slope. 
 
Table 1.  Results for the first slope 
 Real Identified 
θ2  2.0   2.00000002893786 
θ1 -0.9  -0.90000000953150 
θ31  0.0   0.00000000015214 
θ30  1.0   1.00000001485449 

 
 
 
 
 
 
 
 
 
 
 
Fig. 4. Time variation of measured input-output 

variables for the second slope. 
 
Table 2.  Results for the second slope 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
Fig. 5. Time variation of measured input-output 

variables for the third slope. 
 
Table 3.  Results for the third slope 

 
 
 
 
 
 

 
Considering measured output contamined by noise 
for the input-output pair from Fig.6 and Fig. 7, the 
identification results for the second slope are 
presented in Table 4. 
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Fig. 6. Time variation of measured  variables with 

noise on output. 

 Real Identified 
θ2  2.0   2.00000007054610 
θ1 -0.9  -0.90000001125488 
θ31 -0.144  -0.14400000531677 
θ30  2.8   2.80000010349192 

 Real Identified 
θ2  2.0   1.99999950652750 
θ1 -0.9  -0.89999991867011 
θ31  0.08   0.07999998039933 
θ30 -2.8  -2.79999931402201 
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Fig. 7. Zoom on time variation of measured  

variables with noise on output. 
 
Table 4.  Results for the second slop with noise on 
output measurement. 

 
 
 
 
 
 

 
 
 

8. CONCLUSIONS 
 
Through this research has been proved that it is 
possible to identify all parameters of continuous time 
nonlinear systems even if they are related to 
measured variables by rational expressions. This is 
possible if the identification problem is formulated as 
a set of interconnected identification problems with 
linear dependences between parameters and 
measured variables. The problem of functionals 
based identification consistency has to be analyzed 
for a broader class of nonlinear systems. 
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