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Abstract: Continuing the papers (Axente et al, 1994; Colosi et al, 2002; Colosi et al, 
2003; Bogdan, 2005), are presented significant aspects of modeling and numerical 
simulation of a nonlinear partial differential equation (npde), used for study of the (N15) 
isotopic separation column. The originality of the paper is the definition and use of 
operator matrix (Mdpx), which, beside the disadvantage of a relatively high volume of 
calculus, cumulates as the main advantage the quasi-general applicability of the method 
for linear or nonlinear partial differential equations. 
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1. INTRODUCTION 
 
To study the (N15) isotopic separation column, it is 
used the following nonlinear partial differential 
equation (npde): 
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where (t), (p) and y = y(t, p) represents the time, 
column high and the (N15) isotope concentration, 
respectively. In the hypothesis of null productivity it 
is noted: a00=(α-1)⋅L, a01=2(α-1)⋅L; a10= h + H and 
a02= - L2/K, where α = 1.055; h = 2.8 atom N/m3; H 
= 430 atom N / m3; L = 1382.4 atom N / day; K = 
4060.8 atom / day⋅m. The integration domains are 
between the limits: t0 = 0 days; tf = 14 days; p0 = 0 m; 
pf = 7 m; the (N15) initial concentration is y00 = 0.365 
mol/m3; and the final concentration yff = 8.2 mol/m3. 
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which, in the hypothesis of numerical integration 
with respect to time (t), allow the state vector x(1×1) 
and implicit the state variable x00=y by form 
 

x = x00    (3) 
 
The known initial conditions (IC) are 
xIC=x00IC=x00(t0, p) and the final conditions (FC) and 
the possible boundary conditions (BC) are expressed 
by: xFC=x00FC=x00(tf, p) and xBC=x00BC=x00(t, pf), 
respectively. 
The goal is the numerical integration of the (npde) 
(2) with respect to time (tk) for different column high 



(p), with the convenient choose of the parameters 
which define the forced solution, until x00(tk, 
p=const) = y(tk, p=const) is close enough to the 
experimental curves, interpreted by the technologist. 
 
 

2. THE OPERATOR MATRIX (Mdpx) 
 
The definition and the use of the operator matrix 
(Mdpx) is presented in (Colosi et al, 2002). In the 
following are detailed the matrix for the example (2): 
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The matrix is partitioned for n=1 state variables, as 
follows: 

a) x(1×1), the state vector (variable) 
b) xT(N×1), the (N) time derived state vector 
c) xP(1×M) matrix, which contains the total 

number of (M) partial differential – with 
respect to the variable (p) – of the state 
vector x(1×1). Because at the calculus start 
(t=t0) xIC=x00IC=x00(t0, p) is known, it can be 
operated with respect to (p) the (M) partial 
differential. 

d) xTP(N×M) matrix is successively calculated 
from the first element of the vector (xT), 
which results from the explicit form of (x10) 
from (2) at t=t0: 
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with the note that all the components (x…) 
from the right member are known from 
(xIC). 
 

To calculate the first line of the matrix (xTP), 
respectively (x1P), are operated (M) partial 
differentials with respect to (p), with the note that all 
the partial results will be take from the previous 
calculated row, disposed above the current line. 
This algorithm is repeated for (N) rows, after which 
it is finally obtained the operating matrix, at the start 
sequence (k-1) 
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respectively. 
The elements of the matrix (Mdpx,k-1) from (6) allow 
the approximation by (truncated) Taylor series of the 

vector (xk) and the matrix (xP,k) form the obvious 
equations: 
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where to the sequences (k-1) and (k) corresponds the 
time tk=tk-1+∆t, with the integration step (∆t) small 
enough and ω≥4. 
With the results (7) and (8) is completed the first line 
of the vector (Mdpx,k) for the new sequence (k) 
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respectively. 
The calculus details for (xT,k) and (xTP,k) are identical 
with the previous presented (k-1) sequence, in 
conformity with the relations (5), (6), resulting the 
matrix (9) at the new sequence (k) and time (tk), 
which is formally identical with the matrix (6), 
considered at the previous sequence (k-1) and time 
(tk-1). 

 
 

3. EXAMPLE RUN ON COMPUTER 
 
Knowing that the equation (1) or (2), for ϕ(t, p) = 0, 
represents the Cohen equation, the goal is the use of a 
forced solution by form (10), which approximate 
close enough the experimental step responses, which 
are interpreted by the technologist as realistic ones. It 
is considered that the experimental form 
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is usual in numerous thermo-chemical processes, 
close to the isotopic separation columns specifics, 
where the concentrations y00=y(t0, p0)=0.365 and 
yff=y(tf, pf) = 8.2 corresponds to the initial time (t0=0) 
at the base of the column (p0=0) and to the final time 
(tf = 14 days) at the top of the column, respectively. 
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constants in days, and (P1) and (P2) can be interpreted 
as “length constant” in (m). 
 

 
Figure 1.The anaytical solutions 
 
Replacing the forced solution (10) in (1) and (2), it is 
calculated ϕ(t, p), which is used in (5) and in the 
following. After multiple testing of the solution (10) 
it is find out that the for T1=1.3 days, T2=1.7 days, 
P1=0.7m and P2=0.9m, the analytical solutions family 
yAN(t, p), qualitatively presented in figure 1, is close 
to the experimental values and to the technologist 
appreciations to. As a result, for these parameters 
from (10), in conformity to the numerical simulation 
steps, based on the operator matrix (Mdpx), exposed 
above, the (npde) (1) and (2) was numerically 
integrated for n=1, N=5 and M=9. 
In Table 1 is presented the analytical concentration 
values (yAN) and the numerical approximated 
concentration values (x00), with respect to time 
t(days), for different high p(m), with the integration 
step ∆t=0.01. The same calculus was repeated for 
other integration steps, like is presented in Table 2. 
The performance index of the numerical integration 
is defined by the cumulative relative error in percent: 
 

∑

∑
⋅=

f

0

f

0

k

k
ANk

k

k
k00

y

x∆

100crepy    (11) 

where k00ANkk00 xyx∆ −=  represents the absolute 
value of the sequential error between the analytical 
solution (yANk) and the numeric approximated 
solution (x00k), between the limits k0=0 and kf=tf/∆t. 
It can be remarked, from Table 2, that the decrease of 
(∆t) from (10-1) to (10-4) progressively decrease the 
maximal value of (crep) from 0.853% to 8⋅10-4%, for 
the same dimensions of the operator matrix 
Mdpx[(n+N)×(1+M)] = Mdpx[(1+5)×(1+9)] = 
Mdpx(6×10), which certify the remarkable 
performances of this method, applied to nonlinear 
partial differential equation (npde) defined in (1) or 
(2). Of course, the decrease of dimensions (N) and 
especially (M) of the operator matrix (Mdpx) 
contribute to (crep) with smaller values. 

 
 

4. CONCLUSIONS 
 

4.1. The paper is oriented strictly to the 
modeling and numerical simulation of a 
nonlinear partial differential equation by 
operator matrix (Mdpx), to approximate the 
concentration evolution y(t, p) from the 
(N15) isotopic separation column. 

4.2. It is used the forced solution (10), with 
exponential evolutions, with respect to 
both the independent variables (t) and (p), 
assuring for T1=1.7 days, T2=1.3 days, 
P1=0.7m and P2=0.9m, a good 
approximation of the analytical solution 
yAN(t, p), with the experimental results 
and the technological specialist 
phenomenological interpretations. 

4.3. The numerical approximation of the 
solution x00 (tk, p=const), using the (Mdpx) 
operator matrix method, leads to 
remarkable results, as results from Table 1 
and Table 2, even at not too great 
dimensions of Mdpx(6×10). 

4.4. Not but that this method – considered 
original – needs a high volume of 
calculus, necessary to the program 
initialization, excel with quasi-general 
applicability for linear or nonlinear forms 
of partial differential equations. 

4.5. The logical scheme based on this method 
is simple and flexible, without special 
programming methods. 
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Table 1 
 

t(days) 
p(m) 2 4 6 8 10 12 14 crep 

yAN 3.367 6.181 7.443 7.918 8.083 8.138 8.156 7 x00 3.385 6.190 7.447 7.920 8.084 8.138 8.156 0.085 

yAN 3.347 6.142 7.396 7.868 8.032 8.086 8.104 6 x00 3.365 6.151 7.400 7.869 8.032 8.086 8.104 0.085 

yAN 3.290 6.031 7.261 7.724 7.885 7.939 7.956 5 x00 3.307 6.041 7.265 7.726 7.886 7.939 7.956 0.085 

yAN 3.133 5.729 6.893 7.331 7.484 7.534 7.550 4 x00 3.150 5.738 6.897 7.333 7.484 7.534 7.551 0.085 

yAN 2.738 4.963 5.961 6.337 6.467 6.511 6.525 3 x00 2.753 4.971 5.964 6.338 6.468 6.511 6.525 0.084 

yAN 1.898 3.335 3.979 4.222 4.306 4.334 4.343 2 x00 1.907 3.339 3.981 4.223 4.306 4.334 4.343 0.081 

yAN 0.749 1.110 1.272 1.333 1.354 1.361 1.363 1 x00 0.752 1.111 1.272 1.333 1.354 1.361 1.363 0.062 

yAN 0.365 0.365 0.365 0.365 0.365 0.365 0.365 0 x00 0.365 0.365 0.365 0.365 0.365 0.365 0.365 0 

 
Table 2 

 
∆t 0.1 0.01 0.005 0.002 0.001 0.0001 

crep max 0.853 8.5⋅10-2 4.2⋅10-2 1.7⋅10-2 8⋅10-3 8⋅10-4 
 
 


