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Abstract: The paper is concerned with the improvement of sufficient conditions for the 
exponential stability of Hopfield-type neural networks displaying interaction delays. The 
results are based on a method obtained in our previous work that combines an idea 
suggested by Malkin for studying the absolute stability of a nonlinear system via their 
linearisations and a procedure proposed by Kharitonov for construction of an “exact” 
Liapunov-Krasovskii functional used in the analysis of uncertain linear time delay 
systems. Since the Liapunov function method give only sufficient conditions for stability, 
the improvement of these criteria is obviously necessary. These less conservative 
conditions are suitable for the implementation of recurrent neural networks. 
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1.  INTRODUCTION 
 
Neural networks are structures that possess 
“emergent computational capabilities”, that is they 
consist of interconnected simple computational 
devices to which interconnections confer increased 
computational power, property which cannot be 
inferred from the propeties of an individual element. 
The field of neural networks deals with two types of 
networks (Bose and Liang, 1996): feedforward and 
recurrent neural networks. Feedforward networks 
implement mappings from the input pattern space to 
the output space. Once the interconnection weights 
obtained by a training process are fixed, the neurons 
are totally determined by inputs, independent of their 
past states. Feedforward networks do not display any 
dynamics. For more complicated information 
processing one needs recurrent neural networks 
(RNN). Due to theirs cyclic interconnections RNN 
are dynamical systems with very rich spatial and 
temporal behaviours: stable and unstable fixed 
points, limit cycles and chaotic behaviour. These 
behaviours make them suitable for modeling certain 
cognitive functions such as associative memory, 
unsupervised learning, self-organizing maps and 

temporal reasoning.  
 
The mathematical models of recurrent neural 
networks arise both from the modeling of some 
behaviours of biological structures or from the 
necessity of Artificial Inteligence  to consider some 
structures which solve certain tasks. None of these 
two cases has as primarly aim stability aspects and a 
“good” qualitative behaviour. On the other hand, 
these properties are necessary and therefore 
important for the network to achieve its purpose. 
 
Hopfield-type neural networks are recurrent networks 
consisting of one layer of totally interconnected 
neurons. Symmetric Hopfield networks model 
associative memories. In this case the stable fixed 
points in state space store stationary patterns which 
has to be retrieved from partial or distorted 
information. Asymmetric Hopfield networks with 
limit cycle attractors can be used for associative 
memories of temporal sequences of patterns and also 
as pattern sequence generators. In both cases the 
stability of the equilibria is equally important. On the 
other hand, the existence of reacting time delays may 
introduce oscillations or may lead to instability of the 



network. 
 
Since the mathematical tools for checking the 
stability properties gives only sufficient conditions, 
these criteria deserve a permanent improvement. This 
means sharper and less conservative conditions, 
which can be relatively easy to check on a given 
network. 
 
 

2.  THE MATHEMATICAL MODEL AND 
PROBLEM STATEMENT 

 
We consider the standard equations for the Hopfield 
network affected by time delays at the 
interconnection level (see Gopalsami and He, 1994; 
van den Driessche and Zou, 1998): 
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where: 
 

xi - the state of the neuron i; 
cij - the synaptic weight between neurons i and j 
g(·) - the nonlinear activation function; 
ai - a positive parameter; 
Ii - the bias for the neuron i; 
j - the index for the neurons connected with the 

neuron i; 
τj - the time-lag associated to each 

interconnection from the neuron j to the 
neuron i; nj ,1= . 

 
The nonlinearities for Hopfield networks are of the 
sigmoidal type; some examples of such functions are 
the following: 
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All sigmoidal functions are bounded: more specific 
their range is [-1, 1]. Also these functions are 
monotonically increasing and globally Lipschitzian. 
This means they satisfy the inequalities: 
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For instance, the Lipschitz constant for the functions 
defined in (2) is 1, 1/2, 4/π2 respectively.  
The goal of the paper is to obtain sufficient 
conditions for the asymptotic stability of the 

Hopfield-type network with time delay feedback 
described by equations (1). Due to their properties, 
the sigmoidal functions belong to the class of the 
sector restricted (Lurie type) nonlinearities what 
sends to the absolute stability problem. In fact, this 
problem is a robustness problem with respect to an 
entire class of nonlinear functions. 
Since the simplest Liapunov function(al) in this case 
is the quadratic one, we focus on such function(al)s. 
In the linear case a quadratic Liapunov functional 
may provide necessary and sufficient conditions for 
exponential stability, but in the time delay case the 
sharpest most general quadratic Liapunov function 
(as suggested by the papers of Datko and Infante with 
Castelan - their exact references are to be found in 
Gu, Kharitonov and Chen, 2003) is rather difficult to 
manipulate. On the other hand, the simplified 
versions which are currently used (including our 
reference D. Danciu and Vl. Rasvan, 2000, 2001a, 
2001b, 2005, D. Danciu, 2002, 2004) deserve 
improvement. 
 
In order to achieve our aim one uses a method 
proposed in our preview work (Danciu, 2004; Danciu 
and Rasvan, 2005) which combines an idea 
suggested by Malkin for studying the absolute 
stability of a nonlinear system via their linearisations 
and a procedure proposed by Kharitonov for 
construction of an “exact” Liapunov-Krasovskii 
functional of the quadratic form used for the analysis 
of uncertain linear time delay systems.  
 
 

3.  MAIN RESULT 
 
Let x* be the equilibrium point for the system (1). 
Without loss of generality, using the change of 
coordinates , one can shift the 
equilibrium to the origin, so that system (1) may be 
written into the form: 
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where  
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Denoting  
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one obtain the matriceal form of (4): 
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with the initial condition ),()( θϕθ =iz  for  

]0,[ τθ −∈ , where j
j
ττ max=  and  ϕ ∈C ([-τ, 0], Rn). 

 
Regarding the nonlinearities fi, if we take into 
account their definition (5) and the properties of 
functions gi, we shall obtain the following sector-type 
restrictions 
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what send us to an absolute stability problem for the 
nonlinear system (7).  
 
Following our method (Danciu and Rasvan, 2005), at 
this point we apply the idea suggested by Malkin. We 
assume that there exist kj > 0, nj ,1= such that for 
fj(zj) = kjzj  the linearized system 
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with its matriceal form  
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where 
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is exponentially stable and consider the perturbed 
system 
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with ( )iii kkb ,−∈ , ni ,1=∀ . Denoting 

, system (12) may be re-written as )( pjj bdiagC=∆
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The robustness problem with respect to these linear 
uncertainties is to find conditions such that the 
perturbed system (13) remains exponentially stable 
for all ( )iii kkb ,−∈ , ni ,1=∀ . This is ensured by 
the Kharitonov-like approach (Kharitonov and 

Zhabko, 2001; Gu, Kharitonov and Chen, 2003) for 
the analysis of uncertain linear time delay systems. 
 
Now, for given σ ≠ 0 we may always find some bj(σ) 
from 
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and consider the system 
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with ( )( )( )jppjj tybdiagCy τ−=∆ :)( . The idea 
of this substitution belongs to Malkin. If we succeed 
in showing stability preservation for ( )ii kk ,−∈ib , 

n,1i =∀ , then we have obtained absolute (robust) 
stability for the nonlinear functions satisfying 
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Since linear system (10) is assumed exponentially 
stable, there exists a positive definite Liapunov 
functional of the quadratic type whose derivative 
along the solutions of the system is also of the 
quadratic type and is negative definite. The 
construction of the Liapunov-Krasovskii functional is 
made according to the Kharitonov procedure 
described below. 
 
Given positive definite  matrices Pnn× 0, Pj, Rj, 

nj ,1=  let us define on C ([-τ, 0], Rn) the positive 
definite functional 
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Since system (10) is exponentially stable, there exists 
a Liapunov-Krasovskii functional V(φ(⋅)) such that 
along the solutions of (10) we have the equality 
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Here we used the Krasovskii-Halanay-Hale notation 

)()( ⋅+=⋅ tzzt  for the state of the time-delay system. 
 
The assumption about the tems ki is much alike to the 
so-called minimal stability introduced by V. M. 



Popov (Popov, V. M., 1966): in order to obtain 
stability for all nonlinear (and linear) functions from 
some sector, it is (minimally) necessary to have this 
property for a single linear function within this 
sector. 
 
Since  and a( )niadiagA 10 −= i > 0, matrix A0 is of 
the Hurwitz type. Therefore, taking also into account 
(8), we may take ki = 0, 0=ik , ii Lk = . 
 
The value of the “exact” Liapunov-Krasovskii 
functional for the trajectory segment z (t + ⋅) is  
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where, since the system (10) is exponentially stable, 
the matrix valued function  
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is well defined for all τ ∈ R (see Kharitonov and 
Zhabko, 2001). In our case K(t) is the transition 
matrix of A0 namely 
  

( )exp()exp()( 0 tadiagtAtK i−== )  (21) 
 
and U(τ) from (20) may be written as:  

)exp()0()( 0ττ AUU =  
 
Following the steps in (Kharitonov and Zhabko, 
2001), the time derivative of Liapunov-Krasovskii 
functional along the solutions of the perturbed system 
(13) is 
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where W is given by (17). For the uncertainties we 
obtain the following quadratic restriction,  
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which will be useful for the estimate of the 
perturbing term in (22) in order to still obtain a non-
positive derivative of the Liapunov functional (19) 
along the perturbed system (13). It is not difficult, 
using standard inequalities (in the line of Gu, 
Kharitonov and Chen, 2003) to obtain the following 
estimate 
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for some 0~ >µ and ∑∑ === n
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obtained from the definition of bj and from the fact 
that  and with this the inequality (24) is 
fulfilled. 

jLjb ≤

 
We have constructed a Liapunov - Krasovskii 
quadratic functional which is strictly positive definite 
and with the derivative along the linear system’s 
solutions at least nonpositive; this last property is 
preserved with respect to the considered uncertainties 
and this shows a possible robust exponential stability 
of the linearized system (10). But, as already 
mentioned, the idea of Malkin (Barbashin, 1970; 
Malkin, 1952) gives more - exponential stability of 
the nonlinear system (7). In fact, if the Liapunov 
functional and its derivative - both being quadratic 
forms - h ve good sign properties for all a

( )iii kkb ,−∈ , then for any fixed  one can 

obtain b

0≠iz

i from (14) and for ( )iiii kkz ,)( −∈b  the 
properties of the Liapunov functional do not change. 
 
Remark that the terms bi may be even time varying, 
what shows that fi may be time varying within the 
range ( )ii kk ,−  provided they are at least integrable 
with respect to t. The integrability is necessary just to 
secure existence of the solution for the Cauchy 
problem. Also the Lipschitz property has now to hold 
uniformly with respect to t. 
 
We have obtained the following result: 
 
Theorem: Let system (10) be exponentially stable. 
Then system (7) is exponentially stable for all 
nonlinearities of the form: 
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with bi(zi) defined by (14), if there exists definite 
positive matrices P0, Pj, Rj, nj ,1=  and a positive 
value µ, such that 
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Sketch of the proof: If we use the standard properties 
of the eigenvalues of positive definite matrices and 



the ordering of the quadratic forms, the following 
estimates are obtained 
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for some positive δ, γ, ε and with )(sup
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the usual norm of the uniform convergence on        
C(-τ, 0; Rn), where W~  is the right hand side of (24). 
From now on we have only to apply standard results 
of  stability theory for time delay systems based on 
quadratic functionals (Halanay, 1963; Hale and 
Verduyn Lunel, 1993; Yoshizawa, 1966) to obtain 
the result. 
 
Remark that we obtained delay-independent stability 
criteria. Also since both the Liapunov functional and 
its derivative are quadratic functionals the stability is 
exponential and since the functional and the 
inequality for the derivative are valid globally the 
stability is also globally. 
 
 

4.  CONCLUDING REMARKS  
AND OPEN PROBLEMS 

 
The paper presents new results concerning stability 
of Hopfield-type neural networks with time delays 
and it is a continuation of our previous research 
concerning this type of recurrent neural networks 
(Danciu and Rasvan, 2000, 2001a, 2001b, 2005; 
Danciu, 2002, 2004). Since the approach have been 
based on the Liapunov method, we obtained only 
sufficient stability conditions. From this point of 
view our results are in the standard line. Their 
specific features come from the extended use of the 
methods of the absolute stability in the area of time 
delay systems with sector-restricted nonlinearities 
(Rasvan, 1975). It is this point of view that leads us 
to consider the approach of Malkin in the absolute 
stability applied to our case. 
 
The genuine breakthrough from (Kharitonov and 
Zhabko, 2001; Gu, Kharitonov and Chen, 2003) 
allowed us to obtain improved sufficient stability 
criteria. We think this is due also to the context 
offered by this Liapunov functional construction to 
the approach of Malkin. 
 
On the other hand, Hopfield-type neural networks are 
systems with several equilibria. This fact allows them 
to act as associative memories. An open problem in 
our future research is to find conditions for a 
desirable global behaviour of this type of recurrent 
neural networks affected by delays. We shall apply 
the same approach, but using a Liapunov functional 
whose derivative along the solutions of the nonlinear 
time-delayed perturbed system has to be canceled on 
the set of the equilibria and only there.  
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