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Abstract: The article provides an example of how to design an digital control for 
maintaining the temperature at a predefined level in a common kitchen refrigerator. The 
control works on the basis of modeling a thermostatic appliance and the use of fuzzy 
logic. Thermostatically simulated and fuzzy controlled model are presented successively. 
The latter is set-up on the basis of the Sugeno’s type of fuzzy rules and the Jang’s 
procedure of learning. MATLAB, SIMULINK and Fuzzy Logic TOOLBOX (FLT) are 
the programming environments used for realization of the model. The principal aim in 
designing the control is to assure the fastest and best transition possible from an analogue 
to digital control of the refrigerating appliance, which represents the basis of a functional 
expansion demanded by the present market.© 
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1. INTRODUCTION 

The concept of designing digital control of a 
compressor in a common kitchen refrigerator is 
described in the article. Fig. 1 introduces a three-level 
concept of our design, which was used for a specific 
refrigerating appliance - the HZOS 3361 model. 
Although, household appliances also contain freezing 
compartments, we do not discuss their particularities, 
so as to provide a more concise survey. The 
compressor control for the freezing compartment was 
set-up equally in the project. In view of potential  

 
technological changes in the product, all procedures 
mentioned below lead to the replacement of 
mechanical thermostats with microprocessor controls, 
which slightly increases the price of a refrigerating 
appliance; however, it enables better control and the 
possibility of introducing new functions. The Internet 
and mobile telephony, enabling remote communi-
cations, stress the importance of these functions even 
more. The concept of the control design can be divided 
into the following phases: 
• the analyses of the observed, thermostatically 
controlled refrigerator; 
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Fig. 1. Three phases of the control design of a kitchen refrigerator.



• the set-up of the software model of thermostatic 
control with reference to MATLAB and SIMULINK 
tools; and 
• the set-up of fuzzy control with reference to 
MATLAB, SIMULINK and Fuzzy Logic TOOLBOX 
(FLT) tools. 
In the first design phase, we are able to analyse the 
basic issues related to the control process. One is the 
temporal relation between the operative and non-
operative mode of the compressor, which we observe 
in the phase of a normal (not start-up) mode of the 
refrigerating appliance. Depending upon the external 
temperature and the actual configuration of the power 
system, the ratio varies between 1:1 and 1:5. The 
second characteristic, resulting from the compressor, 
is the 7 min latency after each cycle of the compressor 
operative mode. Consequently, potentially “higher” 
granulation of control is not possible within a 
controlling period with a predefined lower limit. A 
programming model of thermostatic control was built 
in MATLAB (Matalab, 1994) and SIMULINK 
(Simulink, 1998) environments, in the second phase. 
The purpose of this model was the ability to change 
the response time of the thermostat and the 
refrigerating compartment. Various outgoing time 
functions of the ON/OFF thermostat were thereby 
acquired. In the third phase we set-up a software 
prototype of fuzzy control with the help of the Jang’s 
concept of learning (Fuzzy Logic TOOLBOX, 1998,  
J.R. Jang, 1993), on the basis of the time dependent 
thermostatic output functions. In this phase we also 
tested it on the real appliance under specific 
standardized conditions of measurement. A procedure 
was set-up, which rapidly leads us from thermostatic 
control to the qualitatively equivalent and digitally 
devised fuzzy control. With further adjustments of 
fuzzy control (in the example described, this means 
expansion on contraction of the entire length of the 
ON/OFF cycle), an improved version of control was 
achieved, for which decreased amplitude of oscillation 
around the desired temperature is typical. 
Concurrently, an approximately 3% decrease in the 
consumption of electric energy was attained (M.C. 
Popescu, 1996). The latter results were achieved on a 

couple of compressors for refrigerating and freezing 
parts. In view of the European classification of 
refrigerating appliances into five classes, which 
regards the consumption of electric energy (from A to 
E), the specific product of the producer mentioned 
above would, thus, be promoted from class C to B. 
This would also assure a higher sales price on the 
market for the product. 
 

2. THE MODEL OF THERMOSTATIC CONTROL 
 
The HZOS 3361 is a typical example of the 
refrigerating-freezing appliance that is used in the 
average  household. It consists of the refrigerating part 
(205 dm3 of the volume) and the freezing part (103 
dm3 of the volume). The external measures of the 
appliance are 177 cm × 59 cm × 59 cm. The basic 
characteristics of the performance, established in the 
first phase, are the following (besides a compulsory 7 
min latency of the compressor): a relatively slow 
response time of the cooling system in relation to the 
compressor start time, and a relatively large amplitude 
of oscillation around the desired temperature (± 30C). 
Within the model set-up of thermostatic control, the 
ratio of 1:1 was selected as the proportion between the 
ON/OFF time of the control cycle. The ON part of the 
cycle represents time in which the compressor is 
switched-on, and the OFF part of the cycle defines 
time in which the compressor is switched-off. In 
practice, the described proportion occurs in the 
summer period of the year, when external temperatures 
vary from 250C up. This proportions were measured 
under laboratory conditions in the analysis phase of the 
real system operation. The second phase of designing 
intelligent control represents the model building and 
simulation of thermostatic control on the grounds of 
the basic characteristics of the controlled object, which 
were attained during the first phase. Due to large 
inertia of the controlling system and long duration of 
standardized measurements, 1 min was chosen as the 
basic simulation temporal unit or simulation step. The 
fundamental components of the model, presented in 
fig. 2, are 
• the Switch block, which switches the compressor ON 

Fig. 2. The basic model of thermostatic control of the refrigerating compartment.



and OFF according to the positive or negative error 
e(t+1) (the difference between the temporary and 
referential temperature); the eventual switching of the 
compressor occurs upon a check-up of the status in 
latency; or in other words, the switching-on of the 
compressor does not occur as a result of compressor 
latency during the previous time cycle, where the 
entire time of latency is not yet 7× cycles; the 
sensitivity of the thermostat has a deviation of 0.10C
from the desired temperature; 
• the Compressor block generates the cooling power, 
which is transferred to the Refrigerator Compartment 
corresponding to the ON-OFF cycle; 
• the Refrigerator Compartment represents the 
refrigerating place; it decreases the cooling power 
(Stream) from the environmental factors (Envi), in 
delay, according to the received cooling power; 
correspondingly, the internal temperature of the object 
is calculated and then, with a certain delay, released 
into the next decision cycle, in which a new error is 
calculated in the Difference block, expressed by 
 

e(t+1)=T(t)-Tdesired (1) 
 
The model is beneficial in control testing as results 
can be accomplished much faster using a model 
compared to the results obtained from the control of a 
real object. The model was set-up in a simulating 
environment applying MATLAB and SIMULINK 
tools. fig. 3 presents the efficiency of the results of the 
control simulation and the compressor triggering 
through 600 simulation steps. The left segment of the 
picture evidences that the amplitude and frequency of 
oscillation around the desired temperature (Tdesired = 
50C) are approximately equal to the result, achieved 
during real-object control with thermostatic 
regulation. The right segment of the picture presents 
the triggering function of the compressor. 
 

3. SOFTWARE PROTOTYPE OF  
FUZZY CONTROL 

 
On the basis of the stepwise function, portrayed in the 

right segment of fig. 3, which represents the 

temporally conditioned output from the Switch block 
(a thermostat), fundamental laws of the relationship 
between the ON and OFF part of a controlling cycle 
for the given modeled appliance can be established. 
From here, there is only one more step towards fuzzy 
control. Two alternatives are at hand: fuzzy control 
can be set-up intuitively (M.C. Popescu and Petrişor 
A., 2005, M.C. Popescu and Degeratu Pr., 1996), or 
automatically. We are primarily interested in the latter 
alternative. Following the learning concept, we can 
leave the design of fuzzy-control parameters to the 
FLT module, which represents one of the applicative 
modules of the MATLAB tools. Routines from Yang’s 
principles of learning described in (M. Sugeno, 1985) 
are provided within tools. It uses a hybrid or back-
propagation gradient descent algorithm for the 
identification of parameters of the Sugeno’s rule type 
fuzzy inference system (FIS). As input of the learning 
procedure, left function from fig. 3 is submitted to the 
module. The left function represents input of fuzzy 
control, and the right one the desired output, or 
response of fuzzy control. Both functions are 
submitted to the learning system as vectors, in 600 
value length. Learning within the FLT tools is 
performed in the following steps: 
• automatic preparation of the input/output vectors in 
MATLAB and SIMULINK environments; 
• within FLT, we primarily open a new Sugeno FIS 
model, determine the number of input/output variables 
and then run the ANFIS editor; 
• within the ANFIS editor, we primarily load the 
learning vectors and then generate the FIS matrix; 
finally, the learning procedure is executed for n steps; 
the number n is chosen subjectively.  
Before learning procedures may start, the criterion 
parameters need to be determined. Those are the type 
and the number of input membership functions and the 
mode of output formation (the linear function or 
constant). We selected the default option given by 
FLT: four membership bell functions for the single 
input variable input1, demonstrated in fig. 4, and the 
linear formation of output value. While the input 
variable still represents the error e(t + 1), the output 
variable represents the directive for switching the 

Fig. 3. The results of control (T(n) /refrigerating compartment and out/switch). 



compressor on at value 1, and the directive for 
switching the compressor off at value 0. figs. 5 and 6 
demonstrate plots of translation functions as the result 
of learning after 3, 10, 400 and 1400 steps. 
 

Fig. 4. Selected membership bell functions for the 
input variable. 

 
It is evident that by extending the learning time, a 
more ideal translation of the stepwise function is 
achieved. However, due to obligatory compressor 
latency, we can not achieve completely precise 
matching of the actual stepwise function. The object 
of learning is in fact the output part of the Sugeno’s 
type rule. The latter (M. Sugeno, 1985) can be written 
with the eq. (2) as 
 

if (x1 is A1) and (x2 is A2) and,... ,and (xn is An)
then yj = f(x1,... ,xn) (2) 

 
where, Ai represents the fuzzy set (term), xi the input 
value, and output functions yj the object of learning. In 
most cases, FLT forms so many rules and concurrently 
output functions as there are given input membership 
functions. The function yi = f(x1,... ,xn) can be either a 
constant or a linear function. The constant or 
coefficients of the linear function are the object of 
learning. The greater the number of epochs, the less 
the approximative error, or in other words, coefficients 
or constants come close to an ideal matching of the 
desired function. All details of learning are described 
in (M.C. Popescu and Petrişor A., 2000, M.C. Popescu, 
2003). In our case, the learned rules are demonstrated 

in the eq. (3), while the learned parameters are 
demonstrated in the eq. (4). 
 

if (input1 is in1mfi) then (output is out1mfi), 
 1 i 4 (3) 
 

y1=.1.517x . 7.651, y2 = .0.521x . 0.702,
y3 = .0.252x + 1.602, y4=.0.184x + 1.92 (4) 

 
Since we performed learning via a segmentialy 
derivative function, slight anomalies appear in the 
translation function, which can be avoided on the basis 
of the eq. (5). Thereby, a new model of a refrigerator, 
which is illustrated in fig. 7, can be established. The 
Switch block is exchanged with the Fuzzy Logic 
Controller and Balance blocks. The latter provides 
compensation for anomalies presented in the eq. (5). In 
the left segment of fig. 7, we can see the response of 
the fuzzy controller built on the basis of parameters 
achieved after the three learning steps. The result of 
annulated anomalies can be seen in the right segment 
of fig. 7. 
 

if f (t) 0.5 then f (t) = 1 else f (t) = 0 (5) 
 
4. OPTIMISATION OF CONTROL AND RESULTS 

OF MEASUREMENTS 

Due to the tendency towards the reduction of energy 
consumption, we tried to extend the cycle length (xON
+xOFF) linearly. The main reason for extension was to 
minimize the number of times the device was 
switched-on, which results in increasing the number of 
first overshoots and the consumption of electric 
energy. Reduction in energy consumption was achie-
ved, as well as a greater amplitude deviation from the 
desired temperature as compared with the thermostat. 
In this respect, we linearly reduced the ON/OFF cycle 
(xON+xOFF) to the extent of xOFF = 7. The result was 
unexpected: a better preservation of desired tempe-
rature (if compared with fig. 3, we see the deviation is 
± 1.0C), and the reduction of energy consumption by 
approximately 1.5% have been achieved. The first 
result seems logical, yet the second seems less so. It 
originates from the mechanical and electrical charac-
teristics of the compressor. On the basis of optimised 

Fig. 5. The plot of the learned translation function after 3 and 10 steps. 



fuzzy control, the fuzzy prototype was tested according 
to internationally established standards in special 
measuring environment located on  

 
the premises of the appliance manufacturer. We also 
controlled the freezing compartment. Such measure-
ments last longer in accurate and artificially preserved 
exterior conditions. The standardized measurements 
also demonstrated that fuzzy control results in the 
conservation of approximately 3% of electrical energy. 
The entire daily consumption of electric energy is 
shown in table 1. 

Tabel 1

Thermostatic control   Fuzzy control 
Consumption                 1,64                      1,59 
 (kwh/day) 

5. CONCLUSION 
 

The article presented one of the alternatives for a 
fast transition from classical thermostatic control to 
digital control of the refrigerating compressor on the 
basis of a fuzzy controller. The presented procedure 

enables the set-up of a translation function, which is 
copied from the thermostat’s one. We can furthermore 
optimise the fuzzy controller on the basis of linguistic  

 
corrections in the set of rules, or by finding simple 
solutions, as was done in the case of reducing intervals. 
One of the reasons which justify the transition from 
thermostatic control to the digital one is also the 
inability to configure responding capabilities of the 
thermostat.  
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