
 
 
 
 
 
 
 
 
 
 
 
 

OPTIMAL POWER SHARING BEETWEEN STEAM POWER BLOCKS 
 
 

Matei Vinatoru, 
 
 
 

Department of Automation and Mechatronics, Faculty of Automation, Computers and Electronics  
University of Craiova, 200396 Craiova, A.I. Cuza 13, vinatoru@automation.ucv.ro 

 
 
 

Abstract: This paper is analysing aspects regarding the control of the power and 
frequency of a synchronous generator coupled to an automatic power grid by a steam or 
hydraulic turbine. The mathematical modelling of the system allows choosing the 
adequate control structures function of the inter-influence that appears between the power 
grid and the steam power-blocks reported to the variables that allow the energy transfer: 
frequency and active power. 
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1. INTRODUCTION 

 
Through the liberalisation of the energy market, the 
pressure on public energy utilities grows enormously 
and gets essential for economic and commercial 
success. The planning of short and medium term 
operation of power plant is an important method to 
provide power and heat cost-efficiently. 
 
In any modern electric utility system, cost reduction 
of the energy generated in fossil fuel or hydroelectric 
power plants is a major goal. This can be achieved 
through an optimal power sharing between the steam 
power-blocks in order to get minimal specific costs. 
Since the demand power in the system changes 
permanently, the set points of the power control 
loops shall be changed permanently for all power-
blocks, thus leading to oscillations in the grid 
allocated to the generators or even in the entire power 
grid (Kamei T., 2003, Vinatoru M., 2001). 
 
In this contest it is important to run own plants at 
minimal costs as a function of all available 
possibilities (fuel cost or energy and relevant 
boundary conditions). It is necessary to implement 
on-line optimisation programs for planning and 
sharing the loads in an optimal manner over the 
steam power-blocks of the plant. This problem is an 
optimisation problem with restrictions. 

2. THE STRUCTURE OF STEAM POWER PLANT 
 
In figure 1 is presented a block diagram of a steam 
power plant. A power plant consists of several power 
groups, usually between 4 and 8, having an installed 
power of 100 to 330MW each. The thermal structure 
of the plant allows either the connection of the steam 
boiler directly to the turbine-generator group 
(independent feed) or the connection to a steam 
manifold, which is feeding each group. The later is 
rarely used, since requires a strict control of steam 
parameters for each steam boiler. Synchronous 
generators send the electric power into the grid 
through step-up transformers and electric switches. 
  
The plant, based on the available power, receives a 
power demand from the regional or national 
electrical dispatcher for a certain time interval 
(usually days or weeks). Moreover, sudden power 
demands can occur due to unexpected consumer 
demand or unavailability of other power plants 
connected to the grid.  
  
The plant dispatcher shall distribute the demand to 
the power groups, based on combined criteria: 
specific costs and availability. The group loading 
planning may be modified due to unexpected demand 
therefore the group load (the power setpoint for each 
group controller) will be modified at certain times.  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Two main problems may arise in this case: 
- the setpoints for the power controllers shall be 
based on optimization criteria, which shall assure the 
efficient operation of the power groups within the 
constraints imposed by the group or grid. 
- due to the interconnection, both through the steam 
manifold and the connection to the grid, the time 
interval between two consecutive changes of the 
group power shall be greater than the transient 
regimes that can occur due to perturbations in the 
system. Therefore, is necessary to study the transient 
regimes of the turbine-generator group and to design 
the controller for the group accordingly, in order to 
get short transient regimes and to avoid or limit the 
oscillations that can occur due to variation of the 
group power. 
 
These two problems will be further analyzed in this 
paper. 
 
 

3. CONTROL SYSTEM FOR TURBINE-
GENERATOR GROUP 

 
The design of the control system for the turbine-
generator group requires the generation of a 
mathematical model of the group, simple enough to 
reduce the computational time but accurate enough to 
reproduce the real operation of the group. This is 
necessary since the control structure that will be 
implemented shall allow periodic calculation of the 
control law’s parameters based on the load of the 
power group and real time operational parameters. 
 
During the previous research, the following 
mathematical models for the components of the 
power group were determined: 
 
3.1. The mathematical model of the synchronous 
generator connected to the grid 
 
A power grid is defined as a regional assembly of 
power generators and consumers, closed coupled 
together. The difference between the demand and 
supply is compensated through energy transfer 
between grids using transmission lines (see fig.2), 
where Aj are the power grids and Lij is a transmission 
line.  
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Fig. 1. The structure of the steam power plant Legend: SGi – sincron generator, TRi – Transformer, SPi - Swich 
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Considering the active power and frequency as 
variables and the relation )().()( tMttP GGG ω=  and 
using relations developed in (Vinatoru M., Iancu E., 
C. Maican, 2004)  for the ∆MG(s) and  ∆MT(s), we 
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3.2. The mathematical model of the steam turbine 

 
Using the power balance equations for the prime 
mover (steam or hydraulic turbine) we get: 
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where rTt JT 0ω= , oTω is the steady rotational 
speed of the turbine, Jr is the momentum of inertia 
with respect to the turbine shaft, ∆NT is the power 
generated by the turbine, ∆NS - is the power 
consumed by the generator coupled to the turbine. 
     
For the prime mover, the generated power is a 
function of the opening of the inlet valve XVR, which 
is controlled by the control loop, and the pressure ∆Pt 
(the pressure of the superheated steam or pressure of 
the water at the turbine inlet) of the motor agent 
(steam or water). 
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The power consumed by the generator NS can be 
expressed as a function of the generated power PG 
using the generator efficiency ηG: 
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The transfer functions HNy(s) and HNPt(s) can be 
determined from the energy balance equations for the 
prime mover (steam or hydraulic turbine) and can be 
represented as follows (Vinatoru M., 2001) : 
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where TN is the time constant of the prime mover 
(thermal or hydraulic).  
 
Eventually we can get the block diagram for the 
turbine-generator assembly, represented in figure 3, 
considering that generator speed is equal with the 
turbine speed (ωT=ωG). 

From this block diagram results that, on the channel 
∆NT-∆PG, the system is at the limit of stability: 
 
 
 
 
 
 
 
Fig. 4 Block diagram of the turbine
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From (1), (4), and (8) we can get th
of the turbine-generator assembly p
4, which is used for the simulation.
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In practice, the operation manual of the steam power-
block imposes a certain variation speed of the load, 
in order to avoid these oscillations. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Using the simulation software Matlab, we 
implemented the control structures presented in 
figure 6. The graphic results at the load variation are 
presented in figure 7 and 8.  It can be observed the 
strong oscillatory response of the power-block in the 
initial part of the transient regime, confirming our 
theoretical observations presented before. Analysing 
these simulations, we can draw the following 
conclusions: 
- digital control algorithms shall be implemented for 
the steam power-blocks; 

- design algorithms that can 
of the control value shall be 
- software or hardware bloc
the variation speed of the o
controller used to regulate th
of the generator. 
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-Define the Lagrange function 
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 where λj-represent the components of the Lagrange 
vector, gj(x)-are the components of the restriction 
vector, defined by (10) and (11) as per specifications 
of Kuhn-Tucker theorem (Vinatoru M., 2001). 
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- The solution of the problem: 
From conditions Kuhn-Tucker, we get that, if there is 
a vector x=x* that satisfies the minimum of Lagrange 
function (14) then the following relations are 
satisfied: 
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The theorem Kuhn-Tucker imposes that 

( ) 0≥xg j and the components of the Lagrange vector 

shall be positive 0≥jλ , thus equation (16) can be 
satisfied if: 
 
 ( ) 0=iGjj Pgλ   j=1,r 
 
For the given problem, equations (15) and (16) 
generate the following relations that can be used to 
design a software algorithm, to implement on-line the 
strategy for optimal load sharing between the power-
blocks of a power plant, and satisfying the relations 
(10) to (18): 
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Analysing equations (19) to (22), we see that the 
number of unknown variables is greater than the 

number of equations. In order to get past this 
problem, we consider that all powers PiG are inside 
the restriction domain maxmin iGiGiG PPP << , 
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In these conditions, from (19) we get: 
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Replacing (23) in (20): 
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From (23) and (24) the optimal values for the power-
blocks’ loads can be obtained, which assure the 
minimum production cost for the entire plant: 
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From (17) and (19) we can get the strategy for load 
allocation for each power-block. This strategy can be 
expressed in graphical form and becomes a useful 
instrument for the plant personnel: 
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represent lines in the plane C’i – PiG, which intersect 
the same horizontal line λ1, (see figure 9). The 
intersection points give the optimal powers P1, P2, . . 
. Pn. If the working conditions are changed, a new 
value λ1 is calculated and a new line is drawn. 
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The logical diagram of the program is presented in 
figure 10. 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5. CONCLUSIONS 
 

From the analysis of the real operational conditions 
of the power groups, result the economical 
advantages of the implementation of complex 
systems for monitoring and decision, in order to 
obtain an efficient control of the power groups. 
 
Permanent supervision and analysis of the 
operational regimes provide the following 
advantages: 
-avoiding or preventing fault conditions that can lead 
to group shut down and losses; 
-implementing a system for optimal sharing of the 
load between power group will reduce the 
operational costs and will increase the profit; 
-operation of the group without transient stresses and 
the avoidance of extreme regimes, which will reduce 
the wear and will increase the life of the equipment. 
 
This paper presented a systematic study of control 
problems in the power plant control and the 
possibilities of the optimal power sharing. 
 
For the implementation of the optimisation 
algorithm, the following rules shall be considered: 

 -The optimal powers are calculated in real 
time but the set point changes at the power controller 
of the power-blocks shall be done only at specific 
moments in time and only if the variations from 
previous values are greater than 5%.  If the set point 
is changed continuously, the power-block will be 
permanently perturbed and oscillations can occur. 
 -The set point modification shall be done in 
steps ∆P imposed by the operation rules. 
 -The set point modifications shall be 
performed only during steady regimes of the power 
control loops. 
 
For the real time implementation we can use data 
acquisition and control equipment designed for 
power plant applications.  
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