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Abstract: Continuing the papers (Colosi et al, 2002; Colosi et al, 2003; Bogdan, 2005),
are presented significant aspects of modeling and numerical simulation of some
categories of processes, defined by partial differential equations (pde) of I and II order,
with frequent applications in technique. The originality of the paper is the definition and
the use of the (M) operating matrix, which, beside the disadvantage of a relatively high
volume of calculus, cumulate as the main advantage the quasi-general applicability of
the method for a large category of (pde), linear or nonlinear. This main advantage is
attested by numerous examples, run on computer

Keywords: partial differential equations, state variables, Taylor series, modeling and

numerical simulation

1. INTRODUCTION

For general forms of (pde) of I and II order:
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respectively
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are considered four independent variables: time (t)
and the spatial variables (p), (q) and (r).

For the partial differentials is adopted the obvious
notation:
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where the dependent variable y = y(t, p, q, r) and the
function ¢(t, p, g, r) respects the continuity
conditions in Cauchy sense. If, for example, T = 0, P
=0,Q=0andR=0,orT=0,P=1,Q=0and R =
0,orT=1,P=0,Q=1,R=0, then results

X0000 = ¥ ) “)
Xo101 = Gigr (5)
and
2
Xj010 = Gf—gq (6)
Respectively.

Of course, (1) and (2) can be limited to three
independent variables, for example (t, p, q), resulting:

000 X000+8100X1002010 X0107a001 X001=¢(t, P, Q)

0

respectively



2000 X000H2100 X 10073200 X200 @110 X 11012020 X020 3011 X011
+a002 Xoo21 101 X101 =Q(L, P, Q).
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If (1) and (2) is limited to two independent variables,
for example (t, p), then results:

90 XooTa10X10F201 X1=¢(t, P) )
respectively

400 XooTa10' X107 a20 X201 1 X1 T2 X2 =Q(L, D).

(10)

All the coefficients (a_) from (1), (2), (7), (8), (9) and
(10) are considered constants, and in the hypothesis
of numerical integration with respect to time,
considered in the present work, the elements of the
state vector (x) is presented in Table 1.

Table 1.
Order 1 1I
Pde » O ©® @ @ «d9
X Xooo0 X000  Xo00 X000 X000 Xo0

X1000 X100 X10

It can be observed that for I order (pde) corresponds
x(1x1) and for II order (pde) corresponds x(2x1).
Multiple versions can present initial conditions
Xic=X(tp, ...), final conditions xpc=x(t; ...) and
boundary conditions, for example xgc=x(t, py, ...) Or
XBC:X(t, Pe )

2. OPERATOR MATRIX (Mgpy)
The definition and the detailed presentation of the

operating matrix (Mgy) is exposed in (Colosi et al,
2003), which for (2) leads to the particular form:
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For n = 2, the (M) matrix is partitioned as follows:

a) The state vector x(2x1);

b) The N™ with respect to time derived state
vector xp(Nx1);

c) The xpgr(2xM) matrix, which contains (M)
successive partial differentials of the state
vector x(2x1), with respect to the
independent variables (p, q, 1), for
combinations of order 0, 1, 2, ... . Because
at the start of calculus (t = ty) the two state
variables Xqgo0(to, P> 4, T) and X;o00(to, P> g5 1)
are known initial conditions, the analytical
partial differentials with respect to (p, g, r) is

recommended to be calculated for as high
order is possible;

d) The xrpor(NxM) matrix is successively
calculated from the first element of the
vector Xr, which results from (2), at t = to,
respectively

—— [t o, P, 1) = (20000 * X 0000 +
42000

X 2000 =

+a1000 - X1000 T 31100 * X1100 T 30200 X 0200 T
+2a0110 " Xo110 T 30020 “ X0020 T 0011 *X0011
+2a0002 “ X0002 t 21001 * X1001 T 21010 “ X1010 T

Tag101 'X0101)]t0
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As a result, all the components (x ) from the right
side are known from x(ty, p, q, r) and Xpqr(to, P, g, 1),
which represents the two rows above the element
(X2000) from (12). To calculate the first line of the
matrix (Xrpgr), respectively (Xppgr), are operated
successive partial differentials on (Xppg0) from (12),
with respect to (p, q, r), with an adequate high order,
with the note that all these partial results are obtained
from the previous calculated rows, disposed above
this first row of (Xtpgr).
In the following is calculated (x30q9), by derivation of
(12) with respect to (t), after which the successive
partial derivation is repeated with respect to (p, q, 1),
formally identical with (Xy00). The note that all the
partial results will be takes over from the previous
calculated rows, disposed above the second row of
(Xtpgr), remain valuable.
This algorithm is repeated for (N>4) number of rows
and (M=10), after which it is obtained the operator
matrix at the sequence (k-1), respectively:

1

—>

M
Xk-1 | XpQR k-1 1 2
Mg k1 = . .¢]\§13)

X1k-1 | XTPQR k-1

The elements of the matrix (Mgpxk1) from (13)
allows the approximation of the vector (x) and the
matrix (Xpgrx) by (truncated) Taylor series from the
obvious series:

O\ AtT

D Xk (14)
= T!

Xk = Xk—l +

At
XpQr.k = XPQR k-1 +Z_T' X7por k-1 » (15)
T=1

where to the sequences (k-1) and (k) corresponds the
time (t.;) and t, = t; + At, respectively, with the
integration step (At) small enough and » > 4.

With the results (14) and (15) are completed the first
two rows of the vector (Mgyx) for the new (k)
sequence:



1 M )
X X
My = L’ﬂ i (16)
X1k | XTPQR k iN
The calculus details for (xryx) and (Xrporx) are the
same with the previous sequence (k-1) calculus, in
conformity with the equations (12), (13), resulting
the matrix (16) at the new sequence (k) and time (ty),

formally identical with the matrix (13), considered at
the previous sequence (k-1) and time (ty.,).

3. EXAMPLES RUN ON COMPUTER

For the two pde examples, considered for general
forms (1) and (2), it was considered:
a) t=0; pe=0; q¢=0; r=0; t=1; p=1; q=1; re=l.
b) The coefficients ago=1; agoe=1 and ag=1.
¢)The analytical solution yan(t, p, g, 1),
necessary for the validation of the errors
cumulated in percent (ercp) and for the start of
calculus, is considered of exponential form,
usual in wvarious technical applications,
respectively:
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which can be particularized for yan(t,p,q) if J;z=0,
Jr=0 and Jpr=1, respectively for yusn(t,p) if —
supplementary — J;o=0, Jo=0 and Jyo=1.

d)Using the following abbreviations:
A =&>1; A =P—2>l; A :&>l;
t P q
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R, R,
JR =—o——; o> o
R; =R, R, -R,
and u=l, the evolution of the analytical
solution yan(t, p, q, 1) is limited inside of a
(super)cube with unitary length. (T;) and (T,)
are time constants, and (P, P», Q;, Q,, R, and
R») can be interpreted as “length” constants” if
(p, q and r) are spatial coordinates
e) The performance indicator of numerical
integration is defined by the cumulated
relative error in percent (crep) by form:

k¢
Z|AXOO...k|

crepy = 100-‘1— (18)
Z|YANk|
ko

where Axg :|yANk _X00Mk| represent the

Jor =— ; K=l

absolute value of the sequential error between
the analytical solution (yank) and the
numerical approximated solution (Xqo.. k),
between the limits ko=0 and k=t/At. The

ty

integration step is Atzm in a minimal

T

version or Atzﬁ in a more restrictive

version, where T,<T,.

In the following, in conformity with the pde solving
method exposed in 2), satisfying the conditions
presented in 3) in paragraphs a, b, ..., e, are
presented the results, obtained by numerical
simulation.

3.1. Pde I(t, p. q. r) by form (1)

for  ajo=T=t#4; agi=P1=pi'4;  20010=Qi=qr'4;
ago=Ri=r¢4; T,=0; P,=0; Q,=0; Ry=0; J;1=-1;
Ior=0; Jip=-1; J»p=0; J1Q=-1 5 J2Q=0; Jig=-1;
Jor=0 ; n=1 ; N=6 ; M=20 ; At=0.01.

Table 2

t X0000 Yan VAN crep
0.01 1.0371 1.0371 3.6358 5-10°°
0.1 1.3367 1.3368 2.4372 0.0024
0.2 1.5208 1.5210 1.7004 0.0058
0.3 1.6608 1.6611 1.1398 0.0099
04 1.7546 1.7550 0.7640 0.0136
0.5 1.8175 1.8180 0.5121 0.0167
0.6 1.8597 1.8602 0.3433 0.0190
0.7 1.8880 1.8885 0.2301 0.0206
0.8 1.9071 1.9075 0.1543 0.0212
0.9 1.9199 1.9202 0.1034 0.0208

1 1.9287 1.9287 0.0693 0.0194

The results from Table 2 corresponds to p=p<l;
q=q=1; r=r=1. With respect to the time constant
alOOOZTIth/4:O.25,

the integration

step At=0.01



represents At :L, a relatively high value. Still,
1

(crep) is maintained in very low limits, which
highlight the correctness of the method.

3.2. Pde I(t, p, q) by form (7)

for a;00=T,=ty/4; ag =P =py'4; ap=Qi=qi4; T>=0;
Py=0; Q:=0; Jir=-1; Jo1=0; Jip=-1; J2p=0; JIQ='1 5
J,=0; n=1;N=6 ; M=20 ; At=0.01.

Table 3

t X0000 YaN Y AN crep
0.01 1.0378 1.0378 3.7037  3-107
0.1 1.3430 1.3430 2.4826 1.7-10°
0.2 1.5305 1.5307 1.7321 4.1-103
03 1.6732 1.6734 1.1610 7-10°
04 1.7688 1.7691 0.7783 9.9-103
0.5 1.8329 1.8333 0.5217 1.25-107
0.6 1.8758 1.8763 0.3497 1.49-107
0.7 19046 1.9051 02344 1.7-102
0.8 1.9238 1.9244 0.1571 1.88-107
0.9 1.9368 1.9374 0.1053 2.04-107

1 1.9454 1.9461 0.0706 2.18-107

The results from Table 3 corresponds to p=p&=l;
g=q=1. With respect to the time constant
aj00=T=t/4=0.25, the integration step At=0.01

represents At = LS, a relatively high value in this
1

case to. Still, (crep) is maintained in very low limits,
which highlight the correctness of the method.

3.3. Pde I(t, p) by form (9)

for a;;=T=ts/4; ap=P;=py4; T,=0; P,=0; J;1=-1;
Jo1=0; J;p=-1; J,p=0 ; n=1 ; N=6 ; M=20 ; At=0.01.

Table 4
t X0000 YaN VAN crep
0.01 1.0385 1.0385 3.7728  3.10"
0.1 13494 13494 25290 1.21-107"
0.2 1.5406 1.5406 1.7644 1.54-107"
03 1.6860 1.6860 1.1827 1.65-10™"
0.4 17835 1.7835 0.7928 1.63-10™"
0.5 1.8488 1.8488 0.5314 1.55-10™"
0.6 1.8926 1.8926 0.3562 1.45.10™"
0.7 19220 1.9220 0.2388 1.34.10™"
0.8 19417 19417 0.1601 1.23-10™"
0.9 19549 1.9549 0.1073 1.12-10°"
1 19637 19637 0.0719 1.03-10™"

The results from Table 4 corresponds to p=p=1. In
this case to, with respect to the time constant
a;0=T=tf#4=0.25, and the integration step At=0.01

. At 1 . .
which represents — =—, a relatively high value,
1
the performance indicator (crep) is maintained at
negligible values, which attest the correctness of the
method.

3.4. Pde II(t, p. q. r) by form (2)

for all a_=1; T\=0.15tg T,=0.2tg P;=0.15pg P,=0.2pg
Q:=0.15q¢ Q,=0.2qz R;=0.15r3 R,=0.2r5; n=2;
N=6 ; M=25 and At=0.01.

Table 5

t X0000 YAN VAN crep
0.01 1.0015 1.0015 0 0

0.1 1.1241 1.1241 2.8891 1.6-10°
02 12976 12976 2.5462 1.09-10™
03 14787 14787 1.6892 26.10*
04 1.6219 1.6219 1.0157 3.10*
0.5 1.7258 1.7259 0.5744 1.1-10°
0.6 17974 1.7978 03144 3.5.10°
0.7 1.8452 1.8459 0.1686 8107
0.8 1.8764 1.8774 0.0892 1.4-107
09 1.8970 1.8977 0.0468 1.8-107
1 19117 19106 0.0244 1.9-107

The results from Table 5 corresponds to p=p=1;

g=q<1; r=r=1. The integration step At=0.01
At 0.01 1

represents only — =——=— from the smallest
T, 015 15

time constant (T;), but the performance indicator

(crep) is maintained at sufficiently low limits, which

highlight the correctness of the method.

3.5. Pde II(t, p. q) by form (8)

for all a_=1; T\=0.15tg T,=0.1tg P;=0.15pg P,=0.1pg
Q:=0.15q¢ Q,=0.1qg n=2 ; N=6 ; M=30 and At=0.01.

Table 6

t X0000 YAN Y AN crep
0.01 1.0031 1.0031 0 0
0.1 1.2232 1.2232 2.8783 0
02 14763 14763 25367 10
0.3 1.6884 1.6884 1.6919 5.7-10*
04 1.8221 1.8220 1.0120 1.7-10°
0.5 1.8999 1.8997 0.5723 3.5.10°
0.6 19433 1.9429 03132 58107
0.7 19666 1.9664 0.1679 7.4-10°
0.8 19787 1.9788 0.0888 7.2:10°
0.9 19842 1.9854 0.0466 1.07-102

1 1.9859 1.9889 0.0243 2.15-1072

In this case to, the integration step (At) represents

only At = 0.01 = L from the smallest time constant
T, 0.10 10



(T,), but the performance indicator (crep) is not
greater than 0.0215%.

3.6. Pde II(t, p) by form (10)

for all a_=1; T,=0.15t; T,=0.1tg P;=0.15ps; P,=0.1pg
n=2 ; N=6; M=20 and At=0.01.

Table 7

t X0000 YaN Y AN crep
0.01 1.0031 1.0031 0 0
0.1 12240 1.2240 2.8999 3.7-107
0.2 14781 14781 25557 8.8-107
0.3 1.6910 1.6910 1.7046 1.4-10°
04 1.8251 1.8251 1.0195 1.9-10°
0.5 19031 1.9031 0.5766 2.4-10°
0.6 19465 1.9465 03156 2.8-10°
0.7 19700 1.9700 0.1692 3.2-10°
0.8 1.9825 1.9825 0.0895 3.810°
0.9 19891 1.9891 0.0469 1.6-10°

1 1.9925 1.9926 0.0245 1.5-10°

In this case to, the integration step (At) represents

only At = 0.01 = L from the smallest time constant

T, 0.10 10

(T,), but the performance indicator (crep) is
negligible.

This form (10) of pdell(t, p) was particularized in the
versions:

- elliptic: a?; —4a, -ag, <0;

- parabolic: a?, —4a,,-ag, =0;

- hyperbolic: aj, —4a,,-ag, >0,
obtaining the same negligible values for (crep).

4. CONCLUSIONS

4.1. The present paper deals with general and
complete forms of pde I and II, with for
variables (t, p, q r), which are than particularized
for three variables (t, p, q) and two variables (t,
p), in the last case including the elliptic,
parabolic or hyperbolic versions. The numerical
integration is operated with respect to time, for
(p), (q) and (r) constants.

4.2. The integration interval is framed in unitary
reported measures, which limits the integration
space inside of a (super)cube with unitary size,
with the note that this size can be easily
modified.

4.3. The considered examples operates with forced
solutions, by exponential form (17), usual in
technique.

4.4. All the examples are solved in a unitary and
systematized manner, using the operator matrix
(Mgpx) method, considered original, with the
advantages and disadvantages presented in the
Abstract of this paper.

4.5. The numerical simulation performances, using
this method, are defined by the cumulative
relative error in percent (crep), which for N=6,
M=(23-30) and At=10"=t/100 (relatively high
values), leads to crep <0.022%.

4.6. The logical scheme, based on this method, is
simple and flexible, without special
programming problems.
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