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Abstract: A sufficient condition that is frequently used for exploring the exponential 
stability of an interval system requires the stability of a a unique test matrix, adequately 
built from the interval-type coefficients. We prove that the fulfilment of this sufficient 
condition guarantees a stronger property for the interval system, called diagonal stability, 
which, concomitantly with the standard exponential stability, ensures the flow (positive) 
invariance of certain time-dependent sets with respect to the state-space trajectories. Our 
approach covers both cases of discrete- and continuous-time interval systems.  
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1. INTRODUCTION 
 
Consider the interval matrix system (IMS): 

 0 0

0 0

( ) ( ); ( ) ;
, , , I ,
x t Ax t x t x
t t t t A A

′ = =
∈ ≥ ∈T

 (1) 

with discrete-time ( ) or continuous-time 
( ) dynamics and the operator ' acting 

accordingly, where 

+=T Z

+=T R
IA  denotes the interval matrix: 

 { :I n n }A A A A× − += ∈ ≤ ≤R A

n

 (2) 
The two matrix inequalities in (2) have the 
componentwise meaning 

, for , 
representing the generic entries of the matrices 

, , 1, ,ij ij ija a a i j− +≤ ≤ = … , ,ij ij ija a a− +

A , A, A− + , respectively. 
 
The following theorem provides sufficient conditions 
for the exponential stability of IMS (1), which are 
very easy to handle by direct computation, because 
their formulation relies on a unique test matrix A  
built from the bounds  of ,ij ija a− + IA . 
 

Theorem 1. (i) (Bauer and Premaratne 1993, 
Theorem 3), (Sezer and Šiljak, 1994, Corollary 1.2), 
(Kaszkurewicz and Bhaya, 2000, Theorem 3.4.17). In 
the discrete-time case, IMS (1) is exponentially 
stable, if the test matrix , 1, ,( )ij i j nA a == …  defined by: 

 
sup {| |} max{| | , | |},

, 1, , ,
I

ij ij ij ija a a a

i j n

− +

∈
= =

=
A A

…
 (3i) 

is Schur stable. 
(ii) (Sezer and Šiljak, 1994, Corollary 2.2). In the 
continuous-time case, IMS (1) is exponentially stable 
if the test matrix , 1, ,( )ij i j nA a == …  defined by: 

 

sup{ } , 1, , ,

sup{| |} max{| | , | |},

, , 1, , ,

I

I

ii ii ii
A A

ij ij ij ij
A A

a a a i n

a a a a

i j i j n

+

∈
− +

∈

= = =

= =

≠ =

…

…

 (3ii) 

is Hurwitz stable.                 
 
The current paper is going to prove that the Schur / 
Hurwitz stability of the test matrix A  ensures to IMS 
(1) a stronger stability property than the standard 
exponential stability guaranteed by Theorem 1. This 



stronger property has been called by us diagonal 
stability and, concomitantly with the exponential 
stability of IMS (1), it guarantees the flow invariance 
(positive invariance) of certain time-dependent sets 
with respect to the trajectories of IMS (1). The 
current approach expands the researches initiated in 
(Pastravanu et al., 2005) for continuous-time 
systems. Moreover, we shall show that the diagonal 
stability of IMSs generalizes a concept used in linear 
algebra for referring to a special class of stable 
matrices, e.g. (Kaszkurewicz and Bhaya, 2000). 
 
The presentation of our work continues according to 
the following plan: Section 2 gives the formal 
definition and some characterizations of the 
diagonally stable IMSs. Section 3 discloses the main 
results, namely the links between the test matrix A  
(3) and the diagonal stability of IMS (1), which are 
illustrated in Section 4. Some comments on the 
importance of these results are formulated in Section 5.  
 
 

2. DIAGONALLY STABLE IMSs 
 
Denote by  the Hölder p-norm in . If D is a 
positive diagonal matrix  

|| ||p
nR

 , (4) 1diag{ ,..., }, 0, 1,...,n iD d d d i= > n=

let D
p  stand for the vector norm given by 

1D
p p

x D x−= . 

 
Definition 1. IMS (1) is diagonally stable in the 
Hölder p-norm (abbreviated as ) if  DSp

(i) in the discrete-time case, there exist a positive 
diagonal matrix D and a constant  such that 0 r< < 1
 ,  with 00, tε +∀ > ∀ ∈ Z 0

nx∀ ∈ R 0
D
px ε≤   

 0
0 0( , , ) D t t

px t t x rε −⇒ ≤ , , ;  (5i) t +∀ ∈ Z 0t t≥

(ii) in the continuous-time case, there exist a positive 
diagonal matrix D and a constant  such that 0r <

 00, tε +∀ > ∀ ∈ R ,  with 0
nx∀ ∈ R 0

D
px ε≤   

   0( )
0 0( , , ) D r t t

px t t x eε −⇒ ≤ , , . (5ii) t +∀ ∈ R 0t t≥

 
Remark 1. Definition 1 is exactly the definition of the 
exponential stability of the equilibrium point {0}, 
e.g. (Michel and Wang, 1995, pp.107), formulated 
for the norm || ||Dp  and particularized for ( )δ ε ε= . 

If IMS (1) is DS , then it is also exponentially stable 

for any norm in , in the standard sense, with 
p

nR
( )δ ε ε≤ .                 

 
The following theorem outlines the difference 
between the standard exponential stability and the 
diagonal stability. 
 
Theorem 2. IMS (1) is  iff  DSp

(i) in the discrete-time case, there exist a positive 
diagonal matrix D and a constant  such that 
the time-dependent sets 

0 r< < 1

 { }( ) ( ) ( ) , , 0Dn t
c pS t x t x t cr t c+= ∈ ≤ ∈R Z > , (6i) 

are flow invariant (positively invariant) with respect 
to the state space trajectories of IMS (1); 
(ii) in the continuous-time case, there exist a positive 
diagonal matrix D and a constant  such that the 
time-dependent sets 

0r <

 { }( ) ( ) ( ) , , 0Dn rt
c pS t x t x t ce t c+= ∈ ≤ ∈R R > (6ii) 

are flow invariant (positively invariant) with respect 
to the state space trajectories of IMS (1). 
Proof : Definition 1 is equivalent to the fact that each 
trajectory initialized at arbitrary  inside or on 

the boundary of the set 
0t ∈ T

{ }0( )}Dn
px x ch t∈ ≤R , 

, will remain inside or on the boundary of the 
set 

0c >

{ }( )Dn
px x ch t∈ ≤R , , for any 0c > t ∈ T , 

, where  0t t≥

        (7) , (discrete-time case),( )
, (continuous-time case).

t

rt
r th t
e t

+

+

⎧ ∈
= ⎨

∈⎩

Z
R

 
Remark 2. For the usual Hölder norms, namely 

1, 2,p = ∞ , the  of IMS (1) shows that, for 

every 

DSp

t ∈ T , the time-dependent invariant sets  
have well-known shapes (hyper-diamonds for 

( )cS t
1p = , 

hyper-ellipses for 2p = , and hyper-rectangles for 
p = ∞ ), whose symmetry axes coincide with the 

coordinate system, and their sizes are uniquely 
defined by the matrix D and the constants c, r.          
 
The following two theorems provide important 
characterizations of the DSp  of IMS (1). 

 
Theorem 3. IMS (1) is  iff there exist a positive 
diagonal matrix D and a constant  / 

DSp

0 1r< < 0r <  
(discrete / continuous-time case) such that 
 ( ) ( ) ,D

A p hφ τ τ τ≤ ∀ ∈ T , IA A∀ ∈ , (8) 

where  is defined by (7) and ( )h t ( ) D
A pφ τ  denotes 

the operator norm induced by the vector norm || ||Dp , 
applied to the transition matrix 

  (9) , (discrete - time case),( )
, (continuous time case).A A

A
e

τ

τφ τ
⎧

= ⎨
−⎩

Proof. Sufficiency: If (8) is true, then, for  

and 
0t∀ ∈ T

0 0 0, D
p ( )x x h t∀ ≤ , we can write for IA A∀ ∈ , 

0 0 0 0 0 0( , , ) ( ) ( ) ( )D D D D
A Ap p p px t t x t t x t t x h tφ φ= − ≤ − ≤

0,t t t∀ ∈ ≥T . 
Necessity: If IMS (1) is , for , DSp 0t∀ ∈ T 0x∀ , 

0 ( )D
p 0x h t= , we can write 0 0( , ) ( )D

px t t x h t≤ , 
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0t t∀ ≥ . On the other hand, for IA A∀ ∈ , , 

, we have 
0 ,t t∀ ∈ T

0t t≥
0

0
1

( ) sup ( )
D
p

0 0
D D

A Ap
z

t t t t zφ φ
=

− = − p =  

1
0 0

1
0 0 0

( ) 1

sup ( ) ( )
D

p

D
A p

h t x

t t h t xφ
−

−

=

= − =  

0 0

1
0 0 0

( )
( ) sup ( , , ) ( )

D
p

D
p

x h t
h t x t t x h t t−

=
= ≤ 0− .              

 
Theorem 4. IMS (1) is DS  iff there exist a positive 
diagonal matrix D and a constant  / 

p

0 1r< < 0r <  
(discrete / continuous-time case) such that 

( ) D
pV x x=  is a strong Lyapunov function with the 

decreasing rate r. 
Proof: Obviously ( ) || ||DpV x x=  is positive definite. 
The statement “V has the decreasing rate r” is 
equivalent to 

  (10) ( ) (
0 0 0 0

0 0 0 0

, , , ( ),
( , , ) ( ) ( ) ,

t t t t x x t
V x t t x h t t V x t
∀ ∈ ≤ ∀ =

≤ −
T

)
where  is defined as in (7). Thus, we have to 
show that (10) is fulfilled iff IMS (1) is . 

Necessity: If IMS (1) is 

( )h t
DSp

DSp , then IA A∀ ∈ , 

,  we have , , 0t∀ ∈ T 0 0( ) ,nx x t∀ = ∈ R t∀ ∈ T 0t t≥

( )0 0 0 0 0 0( , , ) ( ) ( ) ( ) ( )D D D
A Ap pV x t t x t t x t t t x tφ φ= − ≤ −

( )0 0( ) ( )h t t V x t≤ −
p

, showing that condition (10) is 
met.  
Sufficiency: We give a proof by contradiction and 
assume that IMS (1) is not DS . This means that 

 defined by (6) for  is not flow-invariant 
with respect to IMS (1), i.e. , 

p

1( )S t 1c =

0 ,t t∃ ∈ T 0t t< , 
1 1

0 0( ) ( ) 1 ( ) ( )D D
pph t x t h t x t− −≤ < . This contradicts 

(10) saying that 1 1
0 0( ) ( ) ( ) ( ) DD

p ph t x t h t x t− −≤ .       
 
Based on the previous results, now we are able to 
express the link between the matrices IA A∈  
defining the dynamics of IMS (1) and the . DSp

 
Theorem 5. IMS (1) is DS  iff there exist a positive 
diagonal matrix D and a constant  / 

p

0 1r< < 0r <  
(discrete / continuous-time case) such that 
(i) in the discrete-time case 
 D

pA r≤ , IA A∀ ∈ , (11i) 
(ii) in the continuous-time case 
 ( )D

p
A rµ ≤ , IA A∀ ∈ , (11ii) 

where D
pA  is the matrix norm induced by the vector 

norm D
p  and ( )

0
( ) lim 1D

p

D
pA I A

θ
µ θ θ

↓
= + −  is a 

matrix measure based on the induced matrix norm, 
see, e.g. (Desoer and Vidyasagar, 1975). 
Proof: (i) In the discrete time case, the necessity 
results from inequality (8) in Theorem 3 for 1τ = . 
For sufficiency, note that inequality (11i) implies that 
for , if , nt x+∀ ∈ ∀ ∈Z R ( )x t x=  then ( 1) D

px t + =  

( ) ( ) ( )D D D
p p p

D
pAx t A x t r x t≤ ≤ , IA A∀ ∈ , i.e. 

( ) D
pV x x=  is a strong Lyapunov function with the 

decreasing rate r. 
(ii) In the continuous-time case, the necessity results 
from Theorem 2, because ( ) D r

A p e θφ θ ≤  and 

( ) ( )|| || 0 0
( ) lim 1 lim ( ) 1D

p

D D
Ap pA I A

θ θ
µ θ θ φ θ

↓ ↓
θ= + − = − ≤

( )
0

lim 1re rθ

θ
θ

↓
≤ − = . 

Sufficiency: For , if nt x+∀ ∈ ∀ ∈R R ( )x t x=  then 

( )
0

( ) lim ( ) ( )D D
p pD x t x t x t

θ
θ θ+

↓
= + − =   

( )
0

lim ( ) ( ) ( )D D
A p px t x t

θ
φ θ θ

↓
= − ≤  

( ) || ||0
lim ( ) 1 ( ) ( ) ( )D

p

D D
A p px t A x t

θ
φ θ θ µ

↓
⎡ ⎤ D

p≤ − =⎢ ⎥⎣ ⎦
≤  

( ) ,D
pr x t≤  IA A∀ ∈ . Thus, ( ) || ||DpV x x=  is a strong 

Lyapunov function with the decreasing rate r.          
 
Remark 3. Theorem 5 confirms that  is a 
stronger property than the standard exponential 
stability of IMS (1), which is characterized by the 
eigenvalues of the matrices 

DSp

IA A∈ . Denote by 
( ) 1,..., ,i A i nλ =  the n eigenvalues of IA A∈ . If IMS 

(1) is DSp r then we have ( ) 1D
i pA A rλ ≤ ≤ < , 

1,...,i n= , IA A∀ ∈ , (in the discrete-time case), and 

|| ||Re ( ) ( ) 0D
p

i A A rλ µ≤ ≤ < , , 1,...,i n= IA A∀ ∈ , (in 

the continuous-time case).                
 
Remark 4. For 2,p =  inequalities (11i) and (11ii) in 
Theorem 4 yield the definition given in 
(Kaszkurewicz and Bhaya, 2000) for the diagonal 
stability of the matrices IA A∈ . Thus, in the 
discrete-time case, (11i) with  is equivalent 
with the Stein inequality fulfilled by the interval 
matrix 

2p =

IA , i.e. 
    2 2 2 0, 0 1TA D A r D r− ≤ < < , IA A∀ ∈ ,  (12i) 
and in the continuous-time case, (11ii) with 2p =  is 
equivalent with the Lyapunov inequality fulfilled by 
the interval matrix IA , i.e. 
   2 2 22 0, 0TA D D A rD r+ − ≤ < IA A∀ ∈, . (12ii) 
This fact motivated us to use the concept of diagonal 
stability for IMS (1), by transferring it from the 
matrix algebra and enriching its sense within the 
context of the qualitative analysis of dynamical 
systems.                  
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3. MAIN RESULTS 
 
Theorem 6. IMS (1) is  for any Hölder p-norm if  DSp

(i) in the discrete-time case, matrix A  built 
according to (3i) is Schur stable;  
(ii) in the continuous-time case, matrix A  built 
according to (3ii) is Hurwitz stable.  
 
To prove this result, we need the following two 
lemmas: 
 
Lemma 1. (i) If P is a nonnegative matrix, then it has 
a real nonnegative eigenvalue (simple or multiple), 
denoted by max ( )Pλ , which dominates the whole 
spectrum of P, i.e. max( ) ( )i P Pλ λ≤ , . (ii) 
If P is an essentially nonnegative matrix, then it has a 
real eigenvalue (simple or multiple), denoted by 

1,...,i n=

max ( )Pλ , which dominates the whole spectrum of P, 
i.e. ( ) maxRe ( ) ( )i P Pλ λ≤ , . 1,...,i n=
Proof: (i) max ( )Pλ  is the spectral radius of P. (ii) 

max ( )sI Pλ +  is the spectral radius of sI P+ , where 

iis p≥ , .                1, ,i n= "
 
Lemma 2. (i) If P is a nonnegative matrix, then, for 
any max ( )r Pλ> , there exists a positive diagonal 

matrix 1diag{ , , }nδ δ∆ = …  such that max ( )Pλ ≤  

 for any Hölder p-norm. (ii) If P is 
an essentially nonnegative matrix, then, for any 

1|| ||pP∆ ∆−≤ r<

Pmax ( )r λ> , there exists a positive diagonal matrix 
1diag{ , , }nδ δ∆ = …  such that max ( )Pλ ≤  

 for any Hölder p-norm. 1
|| || ( )

p
Pµ ∆ ∆−≤ r<

)
Proof: (i) If E is a square matrix with all its entries 1, 
then max (P Eλ ε+  as a function of 0ε ≥  is 
continuous and nondecreasing, according to Theorem 
8.1.18 in (Horn and Johnson, 1985). Hence, for any 

max ( )r Pλ> , we can find an * 0ε >  such that 
. On the other hand, the matrix max ( * )P Eλ ε+ ≤ r

E*P ε+  is positive and there exist its right and left 
Perron eigenvectors  and 

, respectively. If 1/
1[ ]Tnv v v= … 0>

0>1[ ]Tnw w w= " 1/ 1p q+ = , 
then, according to (Stoer and Witzgall, 1962), we can 
write  with 

, where the 
particular cases of norms  and  mean 

, and 1/

1
max|| ( * ) || ( * )pP E P Eε λ ε∆ ∆− + = +

1/ 1/ 1/ 1/
1 1diag{ / , , / }q p q p

n nv w v w= "∆
1p = p = ∞

1/ 1, 1/ 0p q= = 0, 1/ 1p q= = , respectively. 
Since any Hölder p-norm is monotonic, 

 and, finally, we get 

. (ii) When P is essentially 
nonnegative, we consider  such that the matrix 

1 1|| || || ( * ) ||pP P Eε∆ ∆ ∆ ∆− −< + p

r<1
max ( ) || ||pP Pλ ∆ ∆−≤

0s >
sI P+  is nonnegative and we conduct the proof 
similarly to (i). Note that when matrix P is 

irreducible, the positive diagonal matrix  can be 
built directly from the right and left Perron-Frobenius 
eigenvectors of P, yielding (i)  

and (ii) 

∆

1
max ( ) || ||pP Pλ ∆ ∆−=

1
max || ||( ) ( )

p
Pλ µ P∆ ∆−= , respectively.        

 
Proof of Theorem 6: If A  built according to (3i) is 
Schur stable, then Lemma 2 applied to A  ensures the 
existence of a positive diagonal matrix D and of a 
constant 0 r 1< <  such that 1|| || 1pD AD r− < < , for 
any Hölder p-norm. On the other hand, for any 

IA A∈  we have the componentwise matrix 
inequality 1 1 1 1| | | |D AD D AD D A D D AD− − − −≤ = ≤ . 

This yields 1 1|| || || ||pD AD D AD− −≤ p , since any 

Hölder p-norm is monotonic. Thus, we get || ||DpA =  
1|| || 1pD AD r−= < < , IA A∀ ∈ , showing that IMS 

(1) is . (ii) If DSp A  built according to (3ii) is 
Hurwitz stable, then we use a similar construction to 
prove the existence of a positive diagonal matrix D 
and of a constant 0r <  such that IA A∀ ∈ , 

1 1
|| || || |||| || ( ) ( ) ( ) 0D

p pp
A D AD D AD rµ µ µ− −= ≤ < < , 

i.e. IMS (1) is .                DSp

 
Remark 5: The usage of Lemma 2 in the proof of 
Theorem 6 provides a procedure for finding the 
positive diagonal matrix D and the constant 0 1r< <  
(discrete-time) / 0r <  (continuous-time) which 
define the time-dependent sets that are flow-invariant 
with respect to the trajectories of IMS (1).              
 
Theorem 7. The Schur / Hurwitz stability of matrix 
A  built according to (3i) / (3ii) is also a necessary 

condition for IMS (1) to be DS  if there exists p

* IA A∈  such that 
(i) in the discrete-time case || * || || ||D D

p pA A= ;  

(ii) in the continuous-time case || || || ||( *) ( )D D
p p

A Aµ µ= . 

Proof: If IMS (1) is  with the positive diagonal 
matrix D and the constant 0  (discrete-time) / 

DSp

1r< <
0r <  (continuous-time), then (i) in the discrete-time 

case, condition (11i) implies max ( ) || ||DpA Aλ ≤ =  

|| * || 1D
pA= < ; (ii) in the continuous-time case, 

condition (11ii) implies max || ||( ) ( )D
p

A Aλ µ≤ =  

|| || ( *) 0D
p

Aµ= < .                 

 
A direct consequence of Theorem 7 is the following: 
 
Corollary 1. The Schur/Hurwitz stability of matrix 
A  built according to (3i)/(3ii) is a necessary and 

sufficient condition for IMS (1) to be  and 1DS DS∞ .  
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Remark 6. The diagonal stability of IMS (1) in norm 
 ( DS ) is the componentwise exponential 

asymptotic stability (CWEAS) of IMS (1), which was 
analyzed by the previous works (Pastravanu and 
Voicu, 1999), (Pastravanu and Voicu, 2002), 
(Pastravanu and Voicu, 2004). Unlike the current 
approach, the aforementioned papers exploit the 
background created by (Voicu, 1987), (Voicu, 1984) 
and characterize CWEAS of IMS (1) by 

p = ∞ ∞

Ad rd≤ , 
 and 01[ ]Tnd d d= >" 0 1r< <  (discrete-time) / 

 (continuous-time). It is a straightforward task 
to prove the equivalence between these conditions 
and 

0r <

|| || 1D
pA r≤ <  (discrete-time) / || || ( ) 0D

p
A rµ ≤ <  

(continuous-time) for , .  p = ∞ 1diag{ ,..., }nD d= d

},
⎤
⎥⎦

 
 

4. ILLUSTRATIVE EXAMPLE 
 
Example 1 (Xin, 1987), (Chen, 1992): Consider the 
continuous-time IMS defined by the interval matrix: 

  (13) 
2 2{ :

5 1 3 2, ,4 6 5 4

IA A A A A

A A

× − +

− +

= ∈ ≤ ≤
− −⎡ ⎤ ⎡= =⎢ ⎥ ⎢− −⎣ ⎦ ⎣

R

for which the test matrix A  built in accordance with 
(3ii): 

 3 2
5 4A −⎡= ⎢ −⎣ ⎦

⎤
⎥  (14) 

is Hurwitz stable since max ( ) ( 7 41) / 2 0Aλ = − + < . 
Unlike papers (Xin, 1987), (Chen, 1992), proving 
that the IMS is exponentially stable, our Theorem 6 
guarantees that the IMS has a stronger property, 
namely it is DS  for any Hölder p-norm.  p

Given a Hölder p-norm and considering 
max ( )r λ= A , there exist a positive diagonal matrix 

pD  such that the time-dependent set  

   { }2 1( ) ( ) ( )p r
p p

S t x t D x t e−= ∈ ≤R t , t +∈ R , (15) 

defined according to (6ii), is flow invariant with 
respect to all the trajectories of the IMS. Note that 
matrix A  (14) is irreducible, its right and left Perron-

Frobenius eigenvectors being (1 41) /10 1
T

v ⎡= +⎣ ⎤⎦  

and (1 41) / 4 1
T

w ⎡= +⎣ ⎤⎦ , respectively. Taking into 

account the proof of Lemma 2, matrix pD  can be 
constructed with the components of v and w as 
follows: for , , for 1p = 1 1diag{ , }D w= 2w 2p = , 

2 1 1 2diag{ , }2D v w v w=  and for p = ∞ , 
. Figure 1 shows the graphical 

representations of the three invariant sets. 
1 2diag{ , }D v∞ = v

 
Example 2: The same test matrix A  as in Example 1 
results from the construction procedure (3ii) for an 
IMS with a larger matrix interval, namely: 
 

0 2 4 6 8 10 12

-2
-1

0
1

2

-1

-0.5

0

0.5

1

time

p = 1

x1

x2

 
(a) 

0 2 4 6 8 10 12

-2
-1

0
1

2

-1

-0.5

0

0.5

1

time

p = 2

x1

x2

 
(b) 

0 2 4 6 8 10 12

-1

0

1

-1

-0.5

0

0.5

1

time

p = ∞

x1

x2

 
(c) 

Fig. 1. 3D visualisation of the invariant sets defined 
by (15) for: (a) 1p = ; (b) ; (c) . 2p = p = ∞

 

 , (16) 

2 2

10

10

{ : },
10 2 3 2, 5 45 10

IA A A A A

A A

× − +

− +

= ∈ ≤ ≤
⎡ ⎤− − −⎡= =⎢ ⎥ ⎢ ⎥−⎣ ⎦− −⎣ ⎦

R
⎤

which includes the matrix interval defined by (13). 
All the comments on the IMS dynamics formulated 
in Example 1 preserve their validity, despite the 
broader range covered by the current IA . 
 
Example 3: Enlarge the interval matrix in Example 1, 
by maintaining the same A+  and taking 

 5 3
3 6A− − −⎡ ⎤= ⎢ ⎥− −⎣ ⎦

. (17) 
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It is a straightforward task to check that the current 
IMS is exponentially stable, since the roots of the 
characteristic polynomial 
 2

11 22 11 22 12 21det( ) ( )sI A s a a s a a a a− = − + + −   
are located in the left half-plane of the complex plane 
for any matrix  

  

11 12

21 22

11 12

21 22

,

[ 5, 3], [ 3, 2],
[ 3,5], [ 6, 4].

a aA a a
a a
a a

⎡ ⎤= ⎢ ⎥⎣ ⎦
∈ − − ∈ −
∈ − ∈ − −

However, Corollary 1 shows that the IMS is neither 
 nor , because the test matrix 1DS DS∞ A  is Hurwitz 

unstable.  
 
 

5. CONCLUSIONS 
 
Our work proves that the Schur / Hurwitz stability of 
the test matrix A  built according to (3i) / (3ii) 
ensures the  of IMS (1) for any Hölder p-norm. 
This is a stronger property than the standard 
exponential stability of IMS (1), because it also 
guarantees the flow-invariance of certain time-
dependent sets. The usage of Lemma 2 in the proof 
of Theorem 6 provides a procedure for finding these 
time-dependent flow-invariant sets, whenever the test 
matrix 

DSp

A  is Schur / Hurwitz stable. Under the 
hypothesis of Theorem 7, the Schur / Hurwitz 
stability of the test matrix A  becomes a necessary 
and sufficient condition for IMS (1) to be . Thus 
we can rediscover the CWEAS property of IMS (1) 
studied by some previous works of ours as a 
particular case of  given by . 

DSp

DSp p = ∞
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