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Abstract: The paper focuses on a new approach to MATLAB Simulink-based modelling 
and analysis of hybrid systems whose event-driven part(s) is (are) modeled by the Petri 
Net (PN) formalism. A Petri Net Simulink Block (PNSB) allows the connection of a PN 
with other Simulink blocks, by means of events and data regarding the current status of 
the PN. Issues regarding the implementation and exploitation of the Simulink blocks 
included in the Petri Net Library (PNL) are briefly presented. A complex example 
illustrates the effectiveness of the utilization of PNSBs in simulation-based performance 
analysis of hybrid systems. Copyright © SINTES 2005 
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1. INTRODUCTION 
 
Hybrid systems represent a topic of great interest in 
the control systems area. Their behaviour is 
determined by interacting continuous and discrete 
dynamics. During the last two decades different 
modelling issues and approaches have been 
addressed, in accordance with the scientific 
motivation of the groups promoting the researches. 
These approaches differ with respect to the emphasis 
on the complexity of the continuous and discrete 
dynamics, providing various analysis (verification), 
simulation and synthesis methodologies (Koutsoukos 
and Antsaklis, 2003). Despite some valuable 
intentions to prove the compatibility between various 
trends, e.g. (Heemels et al., 2001), the state of art still 
cannot offer a unifying theoretical framework. This 
aspect is also reflected by the diversity of the 
software instruments used by the research groups. 
Generally speaking, each research group developed 
its own software tools, in order to support specific 
applications, corresponding to particular theoretical 
approaches. 
 
MATLAB-Simulink is widely recognized as the most 

popular software environment in Control Engineering 
Education. Besides the Stateflow, also developed by 
the MathWorks Inc. (the producers of MATLAB) 
and relying on finite state machines for representing 
the discrete dynamics of a hybrid system, there are 
currently available only a few tools. CheckMate 
(Chutinan and Krogh, 2003) is a tool for modelling, 
simulating and verifying properties of hybrid systems 
based on standard Simulink and Stateflow blocks. 
Other MATLAB-Simulink based software packages 
are the NetLab (NetLab, 2004) and the recently 
updated Hybrid Toolbox (Bemporad, 2005). 
 
The dynamics of a hybrid system can be described by 
a finite number of continuous dynamical models, 
represented by sets of nonlinear differential or 
difference equations, and a set of rules for switching 
between these models. These switching rules are 
typically described by logic expressions or a discrete 
event system with a finite automaton representation.  
 
Our approach to modelling, simulation and analysis 
of hybrid systems is based on the usage of Petri net 
(PN) formalism (Murata, 1989) for representing their 
discrete-event driven parts. PNs have been used 



  
 
extensively to model manufacturing systems, 
communication systems, information processing 
systems, and chemical processes among others. They 
can be successfully incorporated in approaches to 
hybrid systems, e.g. (Nenninger and V. Krebs, 1997), 
(Koutsoukos and Antsaklis, 1999). The main reason 
we have opted for this methodology is the 
expressiveness of PNs which can be viewed as a 
generalization of finite automata. PNs proved to be 
an excellent tool for capturing concurrency, conflict, 
synchronization and buffer sizes within a system. A 
PN representation for a concurrent process will be 
more compact (fewer vertices) than its associated 
automaton representation. 
 
This paper presents new instruments for addressing 
the dynamics of hybrid systems within the 
framework of MATLAB-Simulink compatible 
software. A Simulink library, the Petri Net Library 
(PNL), was especially developed to allow including 
discrete event driven modules defined by PNs into 
Simulink models. Our approach to hybrid systems 
modeling and analysis allows incorporating accurate 
nonlinear models for the continuous dynamics (built 
from blocks available in the standard Simulink 
libraries) with PN models for discrete event 
dynamics. 
 
The design and implementation of the PNL derived a 
full benefit from our previous experience 
accumulated during the development of the Petri Net 
Toolbox (PN Toolbox) for MATLAB (Mahulea et 
al., 2005), (Pastravanu et al., 2004), which 
commenced in 2000. In mid 2003 we released 
version 2.0 of the PN Toolbox that was included, at 
the beginning of 2004, in the Connections Program 
of The MathWorks Inc. (MathWorks, 2005), as 
broadening the utilization domain of MATLAB 
toward the area of discrete-event systems. The 
current version 2.2 is fully compatible with 
MATLAB 7 SP2. 
 
The organization of this paper is as follows. Section 
2 presents a brief description of the PNL. The main 
facilities offered by a Petri Net Simulink Block 
(PNSB) are depicted in Section 3. The simulation-
based performance analysis of a complex system 
illustrates the utilization of a PNSB in Section 4. 
Some final remarks are formulated in Section 5. 
 
 
2. DESCRIPTION OF THE PETRI NET LIBRARY 
 
The PNL (fig. 1) contains three Petri Net Simulink 
Blocks (PNSBs) corresponding to the three types of 
PN models that can be integrated into the Simulink 
model of a hybrid system, namely untimed, P-timed 
and T-timed. The current version of the PNL includes 
the Simulink block operating with untimed PNs 
which was presented in (Matcovschi et al., 2005). 
The changes brought by this new version of the PNL 
also refer to the internal architecture of the PNSBs, 

the treatment of the external events used in the 
synchronization of the PNs and the possibility of 
broadcasting internal events generated by firing 
certain transitions in the PN model. A Simulink block 
diagram can contain any number of PNSBs needed to 
model a complex system. 
 

 
Fig. 1. The Petri Net Library. 
 
The PN model stored in a PNSB should contain 
synchronized (triggered) transitions (David and Alla, 
2005). The firing of a synchronized transition 
depends on the occurrence of external (triggering) 
events. It is fired whenever (i) it is enabled by the net 
marking and (ii) one of its associated triggering 
events, defined at the PN level, occurs. Both finite 
and infinite server semantics (David and Alla, 2005) 
can be used for transition firings. 
 

 

 
Fig. 2. The internal architecture of a PNSB. 
 
The internal architecture of a PNSB is presented in 
fig. 2. A PNSB accepts, as inputs, a set of signals, 
which can be continuous or discrete; the evolution of 
each signal can generate a Simulink event. Once an 
input signal generates an event, the simulation time 
of Simulink “freezes”, the PNSB identifies the 
generated event and fires all the enabled transitions. 

 



  
 

 
Fig. 3. The main window of the PNSB Editor. 
 
At each simulation step, the PNSB outputs the net 
marking as a vector of n integer values, where n 
represents the number of places in the net. In the case 
when the firing of some transition in the PN model is 
associated with an internal event, these events are 
also outputted. After that, the simulation is resumed 
until a new event is generated. The implementation 
of the PNSBs required the development of tools for 
managing the events and for controlling the 
simulation. 
 
 

3. USAGE OF THE PNSB 
 
A PNSB is equipped with a graphical interface that 
allows the user to draw the PN model (PNSB Editor 
- see fig. 3), define the triggering events (PNSB 
Event Explorer - see fig. 4) and debug the Simulink 
model (PNSB Debugger - see fig. 7). The operation 
of the PNSB relies on callback functions that (i) 
initialize variables, (ii) generate the graphical 
interface, (iii) display the PNSB Editor when the user 
double clicks the Simulink block, (iv) hide the editor 
window when the user closes it and (v) save/load the 
PN model into/from an xml file. 
 
It is worth noticing that the functions of the PNSB 
Editor are similar to the editing facilities available in 
the Draw Mode of the PN Toolbox; this ensures the 
immediate adaptation of the user's skills, once he/she 
has been already acquainted with the exploitation of 
the PN Toolbox. The PNSB Editor exhibits five 
control panels (fig. 3): Menu Bar (PNE1), Quick 
Access Toolbar (PNE2), Drawing Panel (PNE3), 
Drawing Area (PNE4) and a Message Box (PNE5). 
The Menu Bar (PNE1) displays a set of six drop-
down menus, from which the user can access all the 

facilities available in the application. The Quick 
Access Toolbar (PNE2) maps the most frequently 
used facilities of the PetriNet Editor. The Drawing 
Area (PNE4) is implemented as a matrix of cells, 
where the nodes of the PN graph are to be placed, 
with two scrollbars for moving the desired parts of 
the graph into view. The Drawing Panel (PNE3) 
presents five buttons that facilitate user access to Edit 
objects, Add Place, Add Transition, Add Arc and 
Add Token commands. Messages related to the 
simulation are displayed in the Message Box (PNE5).  
 
The PNSB Event Explorer (fig. 4) allows the user to 
manage the triggering events of the current PN 
model. The user can edit the name (EE1) and the 
triggering mode (EE2) for each external event. The 
number and order of PNSB input signals has to 
match the number and order of triggering events 
defined in the Event Explorer for the PN model. The 
selection of a certain event displayed in the Event 
panel is accomplished by pressing the corresponding 
Select event button (EE3). The user can Add (EE4) or 
Delete (EE5) events, and change their order by 
moving up (EE6) or down (EE7). There are three 
types of events that can be defined by the user, the 
differences between them resulting from the 
triggering conditions that must be met by the 
corresponding Simulink signal. Thus, a rising edge 
event triggers the PNSB when the input signal rises 
from a zero or negative value to a positive value (or 
zero if the initial value is negative), while a falling 
edge event is activated whenever the input signal 
falls from a positive value to a zero or negative value 
(or zero if the initial value is positive). An either 
edge event triggers the PNSB when the input signal 
is either rising or falling. The default triggering mode 
for a newly created event is either edge. 

 



  
 

 

Fig. 4. The PNSB Event Explorer. 
 
The PNSB Editor allows specifying the event(s) 
triggering the firing of a transition in the PN model 
by means of the corresponding Edit Transition 
window (fig. 5). If multiple events are associated 
with a transition they must be separated by ‘,’ and, as 
a consequence, the transition can fire on the 
occurrence of an event in the list. A transition 
controlled by a triggering event is distinguished from 
an ordinary transition by one of the icons presented 
in fig. 6. 
 

  
Fig. 5. Edit Transition windows. 
 

 
                (a)            (b)           (c)           (d) 

Fig. 6. Icons used for representing: (a) rising edge, 
(b) falling edge, (c) either edge triggered 
transitions; (d) transitions triggered by events that 
are still undefined. 

 
The PNSB Debugger is a useful tool when 
simulating a Simulink model containing both time-
driven and event-driven systems. The debugger 
pauses the simulation at each simulation step, 
allowing the user to inspect the current state of the 
Petri net or to visualize the evolution of some 
particular signals from the Simulink model. The 
MATLAB figure opened when the user selects the 
Debugger option from the Tools menu is presented in 
fig. 7. The upper buttons (D1) start and stop the 

simulation, the time progress being displayed in a bar 
(D2) together with the simulation time, the start and 
the stop simulation time. If the Enable Debugger 
checkbox (D3) is checked, the simulation is 
interrupted on each occurrence of a triggering event 
associated with the PNSB. The Step button (D4) fires 
one transition of the Petri net at a time, while the 
Continue button (D5) runs the simulation 
introducing, between successive firings, a delay set 
by the Delay listbox (D6). The maximum number of 
firings is set by the value entered in the Breakpoint 
edit item (D7). 
 

 

Fig. 7. The PNSB Debugger. 
 
 

4. ILLUSTRATIVE EXAMPLE 
 
In a steel plant, steel ingots arrive in pairs at a 
soaking pit furnace where they are heated so they can 
be rolled in the next stage of the process (Popescu, 
2005). There is space for five ingots in the soaking 
pit furnace. When an ingot arrives at the furnace, it is 
placed into the furnace if space is available; 
otherwise, it is placed in the cold ingots bank to wait 
for free space. The interarrival times are 
exponentially distributed, the mean value being µ 
min. The initial furnace temperature is 2,200 degrees 
Fahrenheit. The furnace is heated according to the 
differential equation: 
 / 2(2600 )dF dt F= −  (1) 
where F is the furnace temperature. The initial 
temperature of an arriving ingot is uniformly 
distributed between 300 and 500 degrees Fahrenheit. 
When an ingot is inserted into the furnace, it reduces 
the furnace temperature by the difference between 
the furnace temperature and the ingot temperature, 
divided by the number of ingots in the furnace. The 
temperature change of ingots as they are heated in the 
furnace is described by the differential equation: 
 / 0.15( )j jdP dt F P= −  (2) 
where jP  is the temperature of the ingot in the jth 
position in the pit. Each ingot is heated in the furnace 
until it reaches 2,200 degrees and then it is removed. 
 
We are interested in the analysis of the system 
performances for a simulation time of 2,000 min. 
when the mean interrarival time µ ranges from 5 to 
10 min. by recording the statistics on the utilization 
of the furnace, the heating time for the ingots, the 
temperature of the furnace, and the number of ingots 
in cold bank. 

 



  
 

 
Fig. 8. Simulink model of the soaking pit furnace. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9. Subsystems modelling the heating of the pits. 
 

 
Fig. 10. Subsystem modelling the furnace. 

The Simulink model corresponding to this complex 
system is presented in fig. 8. It includes the 
subsystems modelling the heating of the pits (fig. 9) 
and of the furnace (fig. 10) built from conventional 
Simulink blocks. 
The P-timed PN modelling the control logic is 
presented in fig. 3. The place ArrCold is timed, the 

mean value of the associated exponentially 
distributed delay being µ. The firing of transition 
InCold, corresponding to the arrival of 2 cold ingots 
in the system, places 2 tokens in place ColdBank that 
has infinite capacity. Places Pit1, …, Pit5, with 
capacity equal to 1, model the availability of the 
soaking pits in the furnace. Transitions In1, …, In5 
model the transfer of an ingot from the cold ingots 
bank into the furnace. The firing of transition Ini 
broadcasts two events, e and oi, used to reset the 
integrators in the subsystems modelling the heating 
of the furnace and that of Pit i, respectively, for 
i = 1,…,5. Transitions Out1, …, Out5 are trigered by 
the rising edge type external events e1, …, e5 
generated based on the temperature of the ingots 
from the pits in the furnace. 
Figures 11 and 12 show the time evolution of the 
temperatures for the furnace and Pit#1, respectively, 
for the last 100 min. of operation, in the case when 
the mean interarrival time of cold ingots is 7 min. 
Table 1 presents the numerical values of the 
performance indices obtained through simulation. 
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Fig. 11. Time evolution of the furnace temperature 

for 7µ =  min. 
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Fig. 12. Time evolution of the utilization and the 

temperature of Pit#1 for 7µ =  min. 
 

Table 1. Mean values of the performance indices of the system under study obtained through simulation. 
Mean interarrival time [min] 5 6 7 8 9 10 
Total # processed 775 678 574 500 458 421 
Mean # in cold bank 17.35 3.33 1.57 0.78 0.62 0.51 
Mean waiting time [min] 46.71 9.74 5.45 3.13 2.72 2.41 
Mean utilization / pit 0.978 0.850 0.717 0.621 0.566 0.518 
Mean processing time [min] 12.61 12.53 12.49 12.41 12.36 12.31 
Mean furnace temperature [F] 2514 2522.5 2532.4 2537.7 2541.4 2544.9 

 
5. CONCLUSIONS 

 
The newly created Simulink blocks extend the 
possibilities offered by the MATLAB-Simulink 
environment for studying the dynamics of the hybrid 
systems, employing both discrete and continuous 
behavior. They allow the integration of PN models 
with the general simulation philosophy implemented 
in Simulink. 
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