

A NEW APPROACH TO HYBRID SYSTEM SIMULATION:
DEVELOPMENT OF A SIMULINK LIBRARY FOR PETRI NET MODELS

Mihaela Matcovschi, Constantin Popescu and Octavian Pastravanu

Department of Automatic Control and Industrial Informatics
Technical University “Gh. Asachi” of Iasi, Blvd. Mangeron 53A, 700050 Iasi, Romania

Phone/Fax: +40-232-230751, E-mail: {mhanako, opastrav}@delta.ac.tuiasi.ro

Abstract: The paper focuses on a new approach to MATLAB Simulink-based modelling
and analysis of hybrid systems whose event-driven part(s) is (are) modeled by the Petri
Net (PN) formalism. A Petri Net Simulink Block (PNSB) allows the connection of a PN
with other Simulink blocks, by means of events and data regarding the current status of
the PN. Issues regarding the implementation and exploitation of the Simulink blocks
included in the Petri Net Library (PNL) are briefly presented. A complex example
illustrates the effectiveness of the utilization of PNSBs in simulation-based performance
analysis of hybrid systems. Copyright © SINTES 2005

Keywords: Petri nets, Hybrid systems, MATLAB, Simulink, Control engineering
education.

1. INTRODUCTION

Hybrid systems represent a topic of great interest in
the control systems area. Their behaviour is
determined by interacting continuous and discrete
dynamics. During the last two decades different
modelling issues and approaches have been
addressed, in accordance with the scientific
motivation of the groups promoting the researches.
These approaches differ with respect to the emphasis
on the complexity of the continuous and discrete
dynamics, providing various analysis (verification),
simulation and synthesis methodologies (Koutsoukos
and Antsaklis, 2003). Despite some valuable
intentions to prove the compatibility between various
trends, e.g. (Heemels et al., 2001), the state of art still
cannot offer a unifying theoretical framework. This
aspect is also reflected by the diversity of the
software instruments used by the research groups.
Generally speaking, each research group developed
its own software tools, in order to support specific
applications, corresponding to particular theoretical
approaches.

MATLAB-Simulink is widely recognized as the most

popular software environment in Control Engineering
Education. Besides the Stateflow, also developed by
the MathWorks Inc. (the producers of MATLAB)
and relying on finite state machines for representing
the discrete dynamics of a hybrid system, there are
currently available only a few tools. CheckMate
(Chutinan and Krogh, 2003) is a tool for modelling,
simulating and verifying properties of hybrid systems
based on standard Simulink and Stateflow blocks.
Other MATLAB-Simulink based software packages
are the NetLab (NetLab, 2004) and the recently
updated Hybrid Toolbox (Bemporad, 2005).

The dynamics of a hybrid system can be described by
a finite number of continuous dynamical models,
represented by sets of nonlinear differential or
difference equations, and a set of rules for switching
between these models. These switching rules are
typically described by logic expressions or a discrete
event system with a finite automaton representation.

Our approach to modelling, simulation and analysis
of hybrid systems is based on the usage of Petri net
(PN) formalism (Murata, 1989) for representing their
discrete-event driven parts. PNs have been used

extensively to model manufacturing systems,
communication systems, information processing
systems, and chemical processes among others. They
can be successfully incorporated in approaches to
hybrid systems, e.g. (Nenninger and V. Krebs, 1997),
(Koutsoukos and Antsaklis, 1999). The main reason
we have opted for this methodology is the
expressiveness of PNs which can be viewed as a
generalization of finite automata. PNs proved to be
an excellent tool for capturing concurrency, conflict,
synchronization and buffer sizes within a system. A
PN representation for a concurrent process will be
more compact (fewer vertices) than its associated
automaton representation.

This paper presents new instruments for addressing
the dynamics of hybrid systems within the
framework of MATLAB-Simulink compatible
software. A Simulink library, the Petri Net Library
(PNL), was especially developed to allow including
discrete event driven modules defined by PNs into
Simulink models. Our approach to hybrid systems
modeling and analysis allows incorporating accurate
nonlinear models for the continuous dynamics (built
from blocks available in the standard Simulink
libraries) with PN models for discrete event
dynamics.

The design and implementation of the PNL derived a
full benefit from our previous experience
accumulated during the development of the Petri Net
Toolbox (PN Toolbox) for MATLAB (Mahulea et
al., 2005), (Pastravanu et al., 2004), which
commenced in 2000. In mid 2003 we released
version 2.0 of the PN Toolbox that was included, at
the beginning of 2004, in the Connections Program
of The MathWorks Inc. (MathWorks, 2005), as
broadening the utilization domain of MATLAB
toward the area of discrete-event systems. The
current version 2.2 is fully compatible with
MATLAB 7 SP2.

The organization of this paper is as follows. Section
2 presents a brief description of the PNL. The main
facilities offered by a Petri Net Simulink Block
(PNSB) are depicted in Section 3. The simulation-
based performance analysis of a complex system
illustrates the utilization of a PNSB in Section 4.
Some final remarks are formulated in Section 5.

2. DESCRIPTION OF THE PETRI NET LIBRARY

The PNL (fig. 1) contains three Petri Net Simulink
Blocks (PNSBs) corresponding to the three types of
PN models that can be integrated into the Simulink
model of a hybrid system, namely untimed, P-timed
and T-timed. The current version of the PNL includes
the Simulink block operating with untimed PNs
which was presented in (Matcovschi et al., 2005).
The changes brought by this new version of the PNL
also refer to the internal architecture of the PNSBs,

the treatment of the external events used in the
synchronization of the PNs and the possibility of
broadcasting internal events generated by firing
certain transitions in the PN model. A Simulink block
diagram can contain any number of PNSBs needed to
model a complex system.

Fig. 1. The Petri Net Library.

The PN model stored in a PNSB should contain
synchronized (triggered) transitions (David and Alla,
2005). The firing of a synchronized transition
depends on the occurrence of external (triggering)
events. It is fired whenever (i) it is enabled by the net
marking and (ii) one of its associated triggering
events, defined at the PN level, occurs. Both finite
and infinite server semantics (David and Alla, 2005)
can be used for transition firings.

Fig. 2. The internal architecture of a PNSB.

The internal architecture of a PNSB is presented in
fig. 2. A PNSB accepts, as inputs, a set of signals,
which can be continuous or discrete; the evolution of
each signal can generate a Simulink event. Once an
input signal generates an event, the simulation time
of Simulink “freezes”, the PNSB identifies the
generated event and fires all the enabled transitions.

Fig. 3. The main window of the PNSB Editor.

At each simulation step, the PNSB outputs the net
marking as a vector of n integer values, where n
represents the number of places in the net. In the case
when the firing of some transition in the PN model is
associated with an internal event, these events are
also outputted. After that, the simulation is resumed
until a new event is generated. The implementation
of the PNSBs required the development of tools for
managing the events and for controlling the
simulation.

3. USAGE OF THE PNSB

A PNSB is equipped with a graphical interface that
allows the user to draw the PN model (PNSB Editor
- see fig. 3), define the triggering events (PNSB
Event Explorer - see fig. 4) and debug the Simulink
model (PNSB Debugger - see fig. 7). The operation
of the PNSB relies on callback functions that (i)
initialize variables, (ii) generate the graphical
interface, (iii) display the PNSB Editor when the user
double clicks the Simulink block, (iv) hide the editor
window when the user closes it and (v) save/load the
PN model into/from an xml file.

It is worth noticing that the functions of the PNSB
Editor are similar to the editing facilities available in
the Draw Mode of the PN Toolbox; this ensures the
immediate adaptation of the user's skills, once he/she
has been already acquainted with the exploitation of
the PN Toolbox. The PNSB Editor exhibits five
control panels (fig. 3): Menu Bar (PNE1), Quick
Access Toolbar (PNE2), Drawing Panel (PNE3),
Drawing Area (PNE4) and a Message Box (PNE5).
The Menu Bar (PNE1) displays a set of six drop-
down menus, from which the user can access all the

facilities available in the application. The Quick
Access Toolbar (PNE2) maps the most frequently
used facilities of the PetriNet Editor. The Drawing
Area (PNE4) is implemented as a matrix of cells,
where the nodes of the PN graph are to be placed,
with two scrollbars for moving the desired parts of
the graph into view. The Drawing Panel (PNE3)
presents five buttons that facilitate user access to Edit
objects, Add Place, Add Transition, Add Arc and
Add Token commands. Messages related to the
simulation are displayed in the Message Box (PNE5).

The PNSB Event Explorer (fig. 4) allows the user to
manage the triggering events of the current PN
model. The user can edit the name (EE1) and the
triggering mode (EE2) for each external event. The
number and order of PNSB input signals has to
match the number and order of triggering events
defined in the Event Explorer for the PN model. The
selection of a certain event displayed in the Event
panel is accomplished by pressing the corresponding
Select event button (EE3). The user can Add (EE4) or
Delete (EE5) events, and change their order by
moving up (EE6) or down (EE7). There are three
types of events that can be defined by the user, the
differences between them resulting from the
triggering conditions that must be met by the
corresponding Simulink signal. Thus, a rising edge
event triggers the PNSB when the input signal rises
from a zero or negative value to a positive value (or
zero if the initial value is negative), while a falling
edge event is activated whenever the input signal
falls from a positive value to a zero or negative value
(or zero if the initial value is positive). An either
edge event triggers the PNSB when the input signal
is either rising or falling. The default triggering mode
for a newly created event is either edge.

Fig. 4. The PNSB Event Explorer.

The PNSB Editor allows specifying the event(s)
triggering the firing of a transition in the PN model
by means of the corresponding Edit Transition
window (fig. 5). If multiple events are associated
with a transition they must be separated by ‘,’ and, as
a consequence, the transition can fire on the
occurrence of an event in the list. A transition
controlled by a triggering event is distinguished from
an ordinary transition by one of the icons presented
in fig. 6.

Fig. 5. Edit Transition windows.

 (a) (b) (c) (d)

Fig. 6. Icons used for representing: (a) rising edge,
(b) falling edge, (c) either edge triggered
transitions; (d) transitions triggered by events that
are still undefined.

The PNSB Debugger is a useful tool when
simulating a Simulink model containing both time-
driven and event-driven systems. The debugger
pauses the simulation at each simulation step,
allowing the user to inspect the current state of the
Petri net or to visualize the evolution of some
particular signals from the Simulink model. The
MATLAB figure opened when the user selects the
Debugger option from the Tools menu is presented in
fig. 7. The upper buttons (D1) start and stop the

simulation, the time progress being displayed in a bar
(D2) together with the simulation time, the start and
the stop simulation time. If the Enable Debugger
checkbox (D3) is checked, the simulation is
interrupted on each occurrence of a triggering event
associated with the PNSB. The Step button (D4) fires
one transition of the Petri net at a time, while the
Continue button (D5) runs the simulation
introducing, between successive firings, a delay set
by the Delay listbox (D6). The maximum number of
firings is set by the value entered in the Breakpoint
edit item (D7).

Fig. 7. The PNSB Debugger.

4. ILLUSTRATIVE EXAMPLE

In a steel plant, steel ingots arrive in pairs at a
soaking pit furnace where they are heated so they can
be rolled in the next stage of the process (Popescu,
2005). There is space for five ingots in the soaking
pit furnace. When an ingot arrives at the furnace, it is
placed into the furnace if space is available;
otherwise, it is placed in the cold ingots bank to wait
for free space. The interarrival times are
exponentially distributed, the mean value being µ
min. The initial furnace temperature is 2,200 degrees
Fahrenheit. The furnace is heated according to the
differential equation:
 / 2(2600)dF dt F= − (1)
where F is the furnace temperature. The initial
temperature of an arriving ingot is uniformly
distributed between 300 and 500 degrees Fahrenheit.
When an ingot is inserted into the furnace, it reduces
the furnace temperature by the difference between
the furnace temperature and the ingot temperature,
divided by the number of ingots in the furnace. The
temperature change of ingots as they are heated in the
furnace is described by the differential equation:
 / 0.15()j jdP dt F P= − (2)
where jP is the temperature of the ingot in the jth
position in the pit. Each ingot is heated in the furnace
until it reaches 2,200 degrees and then it is removed.

We are interested in the analysis of the system
performances for a simulation time of 2,000 min.
when the mean interrarival time µ ranges from 5 to
10 min. by recording the statistics on the utilization
of the furnace, the heating time for the ingots, the
temperature of the furnace, and the number of ingots
in cold bank.

Fig. 8. Simulink model of the soaking pit furnace.

Fig. 9. Subsystems modelling the heating of the pits.

Fig. 10. Subsystem modelling the furnace.

The Simulink model corresponding to this complex
system is presented in fig. 8. It includes the
subsystems modelling the heating of the pits (fig. 9)
and of the furnace (fig. 10) built from conventional
Simulink blocks.
The P-timed PN modelling the control logic is
presented in fig. 3. The place ArrCold is timed, the

mean value of the associated exponentially
distributed delay being µ. The firing of transition
InCold, corresponding to the arrival of 2 cold ingots
in the system, places 2 tokens in place ColdBank that
has infinite capacity. Places Pit1, …, Pit5, with
capacity equal to 1, model the availability of the
soaking pits in the furnace. Transitions In1, …, In5
model the transfer of an ingot from the cold ingots
bank into the furnace. The firing of transition Ini
broadcasts two events, e and oi, used to reset the
integrators in the subsystems modelling the heating
of the furnace and that of Pit i, respectively, for
i = 1,…,5. Transitions Out1, …, Out5 are trigered by
the rising edge type external events e1, …, e5
generated based on the temperature of the ingots
from the pits in the furnace.
Figures 11 and 12 show the time evolution of the
temperatures for the furnace and Pit#1, respectively,
for the last 100 min. of operation, in the case when
the mean interarrival time of cold ingots is 7 min.
Table 1 presents the numerical values of the
performance indices obtained through simulation.

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000
1200

1400

1600

1800

2000

2200

2400

2600

2800

time

F

Furnace

temperature
mean value

Fig. 11. Time evolution of the furnace temperature

for 7µ = min.

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000

0

0.5

1

Pit # 1

ut
ili

za
tio

n

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000
0

500

1000

1500

2000

2500

time

te
m

pe
ra

tu
re

Fig. 12. Time evolution of the utilization and the

temperature of Pit#1 for 7µ = min.

Table 1. Mean values of the performance indices of the system under study obtained through simulation.
Mean interarrival time [min] 5 6 7 8 9 10
Total # processed 775 678 574 500 458 421
Mean # in cold bank 17.35 3.33 1.57 0.78 0.62 0.51
Mean waiting time [min] 46.71 9.74 5.45 3.13 2.72 2.41
Mean utilization / pit 0.978 0.850 0.717 0.621 0.566 0.518
Mean processing time [min] 12.61 12.53 12.49 12.41 12.36 12.31
Mean furnace temperature [F] 2514 2522.5 2532.4 2537.7 2541.4 2544.9

5. CONCLUSIONS

The newly created Simulink blocks extend the
possibilities offered by the MATLAB-Simulink
environment for studying the dynamics of the hybrid
systems, employing both discrete and continuous
behavior. They allow the integration of PN models
with the general simulation philosophy implemented
in Simulink.

REFERENCES

Bemporad, A. (2005). Hybrid Toolbox, University of

Siena, http://www.dii.unisi.it/hybrid/toolbox/.
Chutinan, A. and B. H. Krogh (2003). Computational

Techniques for Hybrid System Verification,
IEEE Trans. on Automatic Control, vol. 48, no.
1, pp. 64-75.

David, R. and H. Alla (2005). Discrete, Continuous,
and Hybrid Petri Nets, Berlin Heidelberg:
Springer-Verlag.

Heemels, M., B. De Schutter and A. Bemporad
(2001). Equivalence of hybrid dynamical
systems, Automatica, vol. 37, pp. 1082-1091.

Koutsoukos, X.D. and P.J. Antsaklis (1999),
Computational Issues in Intelligent Control:
Discrete-event and Hybrid Systems, In: Soft
Computing and Intelligent Systems: Theory and
Practice, N. Sinha and M. Gupta, Eds.,
Academic Press, pp. 39-69.

Koutsoukos, X.D. and P.J. Antsaklis (2003), Hybrid
Dynamical Systems: Review and Recent
Progress, In: Software-Enabled Control:
Information Technologies for Dynamical

Systems, T. Samad and G. Balas, Eds., Wiley-
IEEE Press, pp. 273-298.

Mahulea, C., M. Matcovschi and O. Pastravanu
(2005). Home Page of the Petri Net Toolbox,
http://www.ac.tuiasi.ro/pntool.

Matcovschi, M.H., C. Lefter and O. Pastravanu
(2005). Petri nets in hybrid system simulation
under Simulink. The 15th Int. Conf. on Control
Systems and Computer Science CSCS15,
Bucharest, CD-ROM.

The MathWorks Inc. (2005). Connections Program,
http://www.mathworks.com/products/connections.

Murata, T. (1989). Petri nets: properties, analysis and
applications, In: Proc. of the IEEE, vol. 77, no.
4, pp. 541-580.

Nenninger, G. and V. Krebs (1997). Modeling and
analysis of hybrid systems: a new approach
integrating Petri nets and differential equations,
Joint Workshop on Parallel and Distributed
Real-Time Systems, pp. 234-238.

NetLab Homepage (2004). http://www.irt.rwth-
aachen.de/download/netlab/.

Pastravanu, O., M.H. Matcovschi and C. Mahulea
(2004). Petri net toolbox – teaching discrete
event systems under MATLAB, In: Advances in
Automatic Control, M. Voicu (Ed.), Kluwer
Academic, Boston/Dordrecht/London, pp. 257-
270.

Popescu, C. (2005). Implementation and Testing of
Simulink Blocks for Petri Net Models, Research
Report – Socrates-Erasmus Mobility Program,
Technical University “Gh. Asachi” of Iasi and
University of Sheffield.

http://www.dii.unisi.it/hybrid/toolbox/
http://www.ac.tuiasi.ro/pntool
http://www.irt.rwth-aachen.de/ download/netlab/
http://www.irt.rwth-aachen.de/ download/netlab/

