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Abstract: A simple car-following model replace human drivers and their low-
predictable reaction time with respect to traffic problems (reaction time 0.25 – 1.25 sec 
needs an inter-vehicle spacing around 30 m or more at 60 km/hour). A way to solve the 
problem is to organise the traffic into platoons, that is groups of vehicles consisting of a 
leader and a number of followers “tightly” spaced, all moving in longitudinal direction. 
The stability of the system in the parameter space is analysed using a specialized 
software DDE-BIFTOOL v. 2.00. 
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1. INTRODUCTION 

 
Traffic flow is a comprehensive stochastic process of 
interactions between drivers, vehicles and the 
geometric conditions of the roadway. To be able to 
design and operate transportation systems in the most 
efficient way one must determine the relationship 
between the traffic flow, traffic density and traffic 
speed.  
 
The development of traffic flow models usually 
require the determination of the following elements: 
-the general equation of traffic flow, where flow is 
the product of speed and density 
-the equation of conservation of vehicles (Lighthill 
and Whitham, 1955) 
-the relationship between speed and density or 
between the flow-density 
 
Traffic congestion has growing rapidly in many 
transportation systems in recent years and has 
become a rather acute problem. An appropriate 
combination of control and communication 
technologies placed on the vehicle to form a platoon 
of vehicles travelling at high speed can lead to 
significant increases in capacity and safety without 
requiring more land for new highways. One idea it 

was the use of automatic control to replace human 
drivers and their low-predictable reaction time with 
respect to traffic problems (reaction time 0.25 – 1.25 
sec needs an inter-vehicle spacing around 30 m or 
more at 60 km/hour). A way to solve the problem is 
to organise the traffic into platoons, that is groups of 
vehicles consisting of a leader and a number of 
followers “tightly” spaced, all moving in longitudinal 
direction.  
 
Traffic models may be classified as follows: 
• scale of the independent variables: continuous, 
discrete, semi-discrete. 
 
- continuous models describe how the traffic systems 

state changes continuously over time in response to 
continuous stimuli. 

- discrete models assume that state changes occur 
discontinuously over time at discrete time instants. 

 
Besides time, also other independent variables can be 
described by either continuous or discrete variables 
(position, velocity). 
• representation of the processes: deterministic, 
stochastic. 
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- deterministic models have no random variables 
implying that variables in the model are defined by 
exact relationships. 
- stochastic models incorporate processes that include 
random variables. 
 
• operational: analytical, simulation. Models can be 
operationalized either as analytical solutions of sets 
of equations or as a simulation model. 
 
• scale of application: networks, stretches, links, 
and intersections. It indicates the area of application 
of the model. 
 
• level of detail: macroscopic, mesoscopic, 
microscopic. 
- macroscopic traffic flow models maps traffic flow 
as a continuous unity of "fluidized" vehicles. No 
vehicle in the traffic flow is identifiable. 
 
The traffic flow is characterized by macroscopic state 
values like density, volume and mean velocity, which 
is associated with each other by the flux relation. 
Following this approach a traffic flow is treated as a 
continuous fluid flow in fluid dynamics. 
- microscopic traffic flow models that maps traffic 
flow as a set of individual vehicles. Each vehicle is 
identifiable and is modeled. The behavior of a 
vehicle depends on its own drive and on influences of 
its environment. The basic microscopic modeling is 
called Follow the-Leader modeling, in which the 
motion of a vehicle depends on the distance and the 
velocity difference to a leading vehicle. 
- mesoscopic traffic modeling is a consistent link 
between microscopic and macroscopic modeling. 
The link is reached by a transition from a 
microscopic to a macroscopic modeling. Mesoscopic 
modeling bases on a distance density relation 
establishing a link between the distance of two 
sequenced vehicles in a microscopic modeling and 
the density in a macroscopic modeling. 
 
In this paper we discuss the stability problem of 
vehicle following systems within throttle and brake 
control. First, we propose a reduced vehicle model 
used in a platoon configuration. Second we study 
individual vehicle stability and give a delay-
dependent sufficient condition. Finally, simulations 
show that the platoon control under-satisfying the 
conditions above can maintain a constant spacing and 
avoid the slinky-effects.  
 
The paper contains four sections besides the 
introduction. Section 2 describe the platoon structure 
and requirements and develops a reduced vehicle 
model to throttle and brake control. Section 3 
comprises a detailed stability analysis including the 
control law and some aspects of frequency sweeping 
tests based on Tsypkin’s criterion. Section 4 is 
dedicated to the simulation experimental results. The 
conclusion in section 5 closes the paper. 

 

2. VEHICLE MODEL 
 

In principle, there are two solutions to the proposed 
multi-objective control problem, depending on 
whether or not one includes any communication of 
the lead vehicle information to each vehicle in the 
platoon. 
 
In the first structure, one needs to assume that there 
exists some large space between platoons through 
interactive vehicle-to-vehicle communication. In 
such a structure, each vehicle has access to the state 
information (relative position, velocity and 
acceleration) of the preceding vehicle and of the 
relative lead vehicle. 
 
In the second scheme, known as autonomous 
intelligent cruise control, the controller has access 
only to the preceding vehicle. Several assumption are 
to be made: the lead vehicle performs a maneuver in 
finite time before reaching a steady state, and prior to 
a maneuver, all the vehicles move at the same steady 
speed.  
 
Both control strategies avoid slinky effects. In the 
sequel, we shall focus on the second control 
technique: autonomous intelligent vehicle control. 
For our analysis one consider a microscopic Follow 
the-Leader modeling which consist of a platoon of n 
vehicles “tightly” spaced, all moving in longitudinal 
direction. In fig. 1 is presented the well known 
configuration of a platoon consisting of n vehicles 
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Fig. 1. Platoon configuration of n vehicles 
 
One denotes xi(t) the position of the i-th vehicle with 
respect to some well-defined reference point O on the 
roadside. The main goal is to maintain a distance H 
between subsequent vehicles (i-1) and i. Denote 

)(tiε   the spacing error between the i-th and (i-1)-th 
vehicles. This quantity is given by  
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Many authors for a variety of purposes have 
developed vehicles models. Assuming that the 



transmission is locked in gear and ignoring tyre slip, 
the state equation for the engine speed is: 
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Since we have not considered tyre slip, the speed of 
the wheel can be evaluated by: 
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Thus, a simple vehicle model is given by: 
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where: 
 

x(t) is the position of vehicle; 
v(t) is the speed of vehicle; 
Je is the effective rotational inertia of the engine; 
h is the effective tyre radius; 
we(t) is the angular velocity of the wheel; 
Tt(t) is the throttle input; 
TL(t) is the load torque on the engine speed, gear 
ratio, grade change etc. 
τ - is the total throttle/torque delay 

 
A vehicle following controller should simultaneously 
guarantee: 
- a desired spacing between the vehicles, called also 
individual vehicle stability, and 
- no slinky-effects, that is no amplification of the 
spacing error between subsequent vehicles, when 
vehicle index increases. 
 
For the vehicle dynamics (2) - (3) using the following 
control law:  
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one gets 
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i=2, 3, …, n 
 
where: 
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'' , vs kk  design constants 
TL – the load torque 
 

3. INDIVIDUAL VEHICLE STABILITY 
 

There are basically two directions in which one can 
develop stability criteria to test the stability of system 
involving time delays. One is to obtain stability 
criteria which are independent of the size of the 
delay. Another way is to get stability conditions 
which are dependent on the size of the delay. It is 
well known that the abandonment of information on 
the delay causes delay-independent criteria to be 
conservative, especially when delays are small. 
 
To study the individual vehicle stability one uses the 
following time dependent equation which represent 
the ith closed loop dynamics described as: 
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i=1, 2, 3, …, n 
 
which does not include the interconnected terms of 
other vehicles. 
 
Using the Laplace transform, one gets the following 
relations: 
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where E(s) is the Laplace transform of )(tε . 
 
The transfer function in open loop is 
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and the transfer function in closed loop is: 
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The characteristic equation has the following form: 
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where 
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Denoting  
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then the characteristic equation has the following 
form: 
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This is a transcendental equation having an infinite 
number of solutions. The analysis of such a system is 
done in the parameter space ( )τββ ,, 10 .  
 
We need to find conditions on the triplet ( )τββ ,, 10  
such that the characteristic equation (8) has no 
solution in the right-half plane C+. First, one needs 
the stability guaranteed for 0=τ , that is the Hurwitz 
stability of the polynomial: 
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Evidently, we have stability if and only if  
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Next, for delay-independent stability, using 
Tsypkin’s criterion, one needs to find pairs ( )10 , ββ  
such that (10) is satisfied and the characteristic 
equation (8) has no roots on the imaginary axis for all 

0>τ . That means the equation: 
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has no roots on the imaginary axis. 
One obtains the following equation: 
 

02
0

22
1

4 =−− βωβω   (13) 
 
that has the real solution: 
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In conclusion, we have roots on the imaginary axis 
and all we can expect is a delay-dependent type 
result.  
To characterise the fact if some root crosses the 
imaginary axis from left to right (towards instability) 
or from right to left (towards stability) we have to 
analyse the sign of the relation 
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- if it is positive, we have one switch from stability to 
instability, and 
- if it is negative, we have one reversal from 
instability to stability. 
 
In our case, we have: 
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that means that by increasing the delay value, some 
root will cross the imaginary axis, this root will 
always crosses from left to right, that is towards 
instability. 
 
Thus, if the stability is guaranteed for delay 0=τ , it 
follows that we can find a bound  function of switchτ

0β  and 1β  such that the stability is guaranteed for all 
),0[ switchττ ∈ . 

 
This bound can be calculated from the equation: 
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By substituting   
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 one gets: 
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The representation of switchτ  in the parameter plane 
( )10 , ββ  is presented in the figure 2. As it can be seen 
the bound of the time delay is increasing at smaller 
values of the parameters ( 10 , )ββ . But these 
parameters must accomplish the following goals: 
- the individual vehicle system should be 

asymptotically stable 
- the transient errors should not amplify with 

vehicle index due to any lead vehicle manoeuvre. 
This is referred to no slinky-effects in the 
platooning. One way to satisfy this requirement is 
that the maximum absolute spacing error of jth 
vehicle should be less than  or equal to that of the 
(j-1)th vehicle. 

  



 
Fig. 2. The representation of switchτ  in the parameter 

plane ( )10 , ββ  
 
Sensor measurements and communications between 
vehicles are required as follows: 
(1) Sensor measurements: The speed and distance of 
the controlled vehicle relative to its preceding vehicle 
is sensed by onboard sensors like radar or sonar. 
(2) Communications between vehicles: The lead 
vehicle velocity may be transmitted to all the 
following vehicles in the platoon, and the control 
state of the lead vehicle, such as throttle control or 
brake control, may also be broadcast to all the 
following vehicles. Thus, the position of the jth 
vehicle relative to the lead vehicle can be obtained by 
summing the position of jth vehicle relative to the (j-
1)th vehicle and the position of the (j-1)th vehicle 
relative to the lead vehicle. 
 
In August 1997, the National Automated Highway 
Systems Consortium (NAHSC) proof of technical 
feasibility demonstrations, called Demo’97. The 
demo was a complete success. This demonstration 
was performed by an eight-vehicle platoon. The eight 
vehicles traveled at a fixed separation distance of 6.5 
m at all speed up to full highway speed. The sensor 
measurements and communications between vehicles 
described above were achieved by combining range 
information from a forward-looking radar with 
information from a radio communication system that 
provided lead vehicle’s position and speed updates 
50 times per second. The Demo showed that platoon 
travel should be technically feasible in the near 
future.  
 
Although early platooning is expensive, it enables 
vehicles to operate much closer together than is 
possible under manual driving conditions, each lane 
carrying at least twice as much traffic as it can today. 
Also, at close spacing, aerodynamic drag is 
significant reduced, which can lead to major 
reductions in fuel consumption and exhaust 
emissions. The high performance automation control 
system also increases the safety of highway travel. 
 

4. SIMULATION RESULTS 
 
The global behavior of the DDE model (1) - (2) in 
the ( )10 , ββ -plane can be investigated with the the 
Matlab package DDE-BIFTOOL; see (Engelborghs 
et al., 2001). 
DDE-BIFTOOL is a collection of Matlab routines for 
numerical bifurcation analysis of systems delay 
differential equation with several constant and state-
dependent delays. The package allows to compute, 
continue and analyse stability of steady state 
solutions and periodic solutions. It further allows to 
compute and continue steady state fold and Hopf 
bifurcations and to switch, from the latter, to an 
emanating branch of periodic solutions. 
 
Homoclinic and hetero-clinic orbits can also be 
computed. To analyse the stability of steady state 
solutions, approximations are computed to the 
rightmost, stability-determining roots of the 
characteristic equation which can subsequently be 
used as starting values in a Newton procedure. For 
periodic solutions, approximations to the Floquet 
multipliers are computed.  
 
The constants used in our case for the vehicle are:  

Rg=0,3058 ; 
Je=0,2630 kgm² ; 

h=0,33m; 
TL=67,7 Nm. 

The controller parameters values are:  
kv=3, 

kvl=0.9, 
ks= 4.5 
ksl=0.5. 

By using the Lyapunov method with ε=0.3055 and 
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one found  
τswitch = 0.0514. 

 
As we can see in the following figure, the system is 
stable for τ = 0,0514 because all the roots are in the 
left half plane.  

 

 
Fig. 3. The roots of the characteristic equation for        
τ = 0,0514 



Using the Tsypkin’s cryterion one found  τswitch = 
0,3099 
 
As we can see in the following figure the system is 
steel stable for τ = 0,3, all the are in the left-half 
plane. 
 

 
Fig. 4. The roots of the characteristic equation for      

τ = 0,3 
 

For τ = 0,32 some roots cross the imaginary axis as it 
can be seen in the following figure. 

 
Fig. 5. The roots of the characteristic equation for      

τ = 0,32 
 
The spacing error evolution is presented in the 
following figure: 

 
Fig. 6. Time evolution of spacing error 
 
 

 

5. CONCLUSIONS 
 
In this paper we had presented a comparative study 
for the stability of a time delay system obtained by 
modelling a vehicle following control system. For the 
proposed model some roots of the characteristic 
equation will cross the imaginary axis from left to 
right (from stability to instability). The superior 
border for τ is greater using Tsypkin’s cryterion that 
using the Lyapunov method. The car-following 
model presented here is valid for any number of cars. 
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