

IDENTIFICATION AND EMBEDDED-SOFTWARE AUTOMATION
FOR WATER DRAIN PROCESS

Monica Leba, Emil Pop

University of Petrosani, System Control,
Applied Informatics and Computer Engineering Department,

Str.Universitatii, no.20, Petrosani,
monicaleba@upet.ro, emilpop@upet.ro

Abstract: In this paper a water drain process is considered in order to design and
implement an automatic control system. In the first part, the caption hydraulic process is
identified and mathematical model is determined. Based on this model and on the process
requirements, the simulation is done. The automatic control system is designed in two
variants, first using a PLC and second by an embedded software controller. At the end of
the paper are presented the experimental results.

Keywords: identification, embedded systems, controller, process automation.

1. INTRODUCTION

Hydraulic processes that contain caption, transport,
treatment and evacuation of water are an important
part of economical and social human activities. In
these processes are used different machines,
installations and electromechanical equipments and
the computer systems for control and information
processing. The most complex processes of the kind
described above are: big cities water alimentation

system, mining water evacuation, water drain, hydro-
energetic systems water management etc. These
complex processes are very different from each
other, but the control and management of them have
almost the same requirements. Further we’ll take into
account the hydraulic process of caption and
evacuation of water from a plant having the block
diagram from figure 1.

Fig.1. Process block diagram

The water accumulates with a variable qa flow in a
tank having the volume V, surface S and instant

height h. The evacuation of the water can be done
using any of the pumping aggregates, by q1 and q2

flows, formed up by pumps (P1, P2), motors (M1,
M2), contactors (K1, K2) and controllers (C1, C2). The
whole process is controlled and monitored with an
industrial PC, having an appropriate graphical
interface (GUI).

Each aggregate will be started when the water
reaches a superior level (Ns1, Ns2) and stopped when
the water gets below an inferior level (Ni).

There are imposed several process management
conditions, as follows:
• Running can be automatic (A) and manual (M);
• Pumps must function cyclically for uniform wear

and to maintain the rotor dry;
• If a pumping aggregate cannot evacuate the

water by itself, then it will be started the second
aggregate too;

• In order to eliminate the pump filling before
starting, simplifying by this the control
algorithm, the pumps are mounted under the
inferior level of the tank, being filled during the
water accumulation;

• Before starting an aggregate there must be
emitted a preventive acoustic signal of 5-9
seconds for personnel protection purposes;

• If the two pumps cannot evacuate the water, then
the alarm will be activated.

Besides the above conditions there must be
monitored the emergency states of the aggregates
(electrical protections, hydraulic protections,
mechanical protections).

The motors have hardware electrical protections
(short-circuit, overload, low voltage and grounding)
by multi-port electronic relays, the control algorithm
will monitor and display the protections state acting
accordingly to the actual situation.

A pump flow loss represents a hydraulic emergency
and the pump must be stopped.

Mechanical emergencies protection must be
supervised and treated according to the client
requirements.

2. IDENTIFICATION, MODELING AND
SIMULATION

The above presentation can be concluded by the
following three classes of conditions: management
conditions, protection conditions and running
conditions.

Management conditions:
• A dynamic graphic user interface (GUI) presents

the process running;
• The user choose the way: automat or manual;

• Aggregates cyclic running and the number of
consecutive starting for each aggregate is
established by the user;

• In normal conditions the water evacuation will
be done in a period of the day when the power
system load is minimal.

Protection conditions:
• Before the aggregates starting, it will be signaled

by a preventive acoustic signal;
• When the water gets over the superior levels, it

will be signaled by an emergency signal;
• The electrical, hydraulic and mechanical

protections are monitored and treaded according
to the requirements.

Running conditions:
• When the water reaches the Nsi superior level the

aggregate Ai (i=1,2) will start;
• When the water gets under the inferior level Ni

all the aggregates will stop;
• Will be counted each aggregate Ai running

times;
• When an aggregate is started it is used a

watchdog for the pump flow monitoring;
• Each running aggregate will be helped by the

other one to evacuate the water in case of big
accumulation flow.

Based on the elements from fig.1 block diagram and
assuming the pumps nominal flows qn1, qn2 and KC1,
KC2 being the K1, K2 contactors control functions,
we can determine the tank water volume variation.

() n22n11a qKCqKCtq
dt
dV

⋅−⋅−=

From this results the tank level h variation law:

()[]∫ ⋅⋅−⋅−⋅=
t

0
n22n11a dtqKCqKCtq

S
1h (1)

Because equation (1) is a relation with continuous
time variables and the next ones are logic variables
with {0,1} values, for compatibility reasons, we’ll
represent the logic operation AND by “ ∧ ” symbol,
OR by “ ∨ ” symbol and NOT by “–“ symbol, as
follows:

yxyx ⋅=∧

yxyxyx ⋅−+=∨

x1x −=

The commutation values of electrical protection PEi,
grounding PTi and hydraulic PHi relays are of logic
type having a serial action through logic operation
AND.

These values are combined with the automat/manual
control option (AMi) that selects the manual
commands stop/start with memorizing (Oi, Pi, KCi) or
automatic command from the controller (Ci) of KCi
contactor (i=1,2).

() () ()[]iiiiiiiiiiii KCPKCPO1AM1CAMPHPTPEKC ⋅−+⋅−⋅−+⋅⋅⋅⋅= (2)

The cyclic functioning equations of the pumps allow
the real levels Ns1, Ns2 connection directly or crossed
to Ns1

P, Ns2
P according to the signal { }1,0C∈ given

by a modulo n counter whose value is done by the
human operator (e.g. n=8).

() CNC1NN 2s1s
P
1s ⋅+−⋅= (3)

() CNC1NN 1s2s

P
2s ⋅+−⋅= (4)

The automatic controllers equations Ci (i=1,2)
depend on Ns1

P, Ns2
P, Ni levels and on floating level

h. When P
1sNh > it will be started the Ai aggregate

and if h is over Ns2
P than it will be started A2 too. The

aggregates will function until iNh < . The Ci
commands are transformed from analogical to logical
and memorized by RS flip-flops.

()[] () ()[]i
P
si

P
s

P
si CNhCNhNhC ⋅>−+<⋅<−= 1111 (5)

Equations (1), (2), (3), (4), (5) allow the achievement
of process simulation using the MatLab-Simulink
platform (fig.2.a).

Simulation results are presented in fig.2.b and fig.2.c
for real situations if only one pump is running and for
both pumps running respectively. A/M commands
and protections are simulated by switches.

Fig.2. Process simulation: a) MatLab-Simulink diagram; b) One pump running; c) Two pumps running

3. SOFTWARE CONTROL IMPLEMENTATION

Based on this model and on simulation results there
was achieved the logic diagram that contain the
programming principle (fig.3).

Fig.3. Algorithm diagram

The algorithm from fig.3 can be implemented in two
ways: using a PLC (minimal variant) and with
embedded-software controller (maximal variant).

Minimal variant
This variant uses a Klockner-Moeller PLC,
programmed by ladder diagrams method. The PLC
has 8 inputs (I1 … I8) and 4 outputs (Q1 … Q4). There
were used 5 inputs and 2 outputs. The mathematical
model is presented bellow:
I1=Ns1=M1 the first superior water level
I2=Ns2=M2 the second superior water level
I3=Ni=CC1=CC2=M3 the inferior water level
I4=M4 the first aggregate protection switch
I5=M5 the second aggregate protection switch
RC1=C2 resets the first counter C1
RC2=/C1 resets the second counter C2
C1=M8 pumps switching cycle
M1⋅/M8+ M2⋅M8=M9 superior levels commutation for
the first aggregate
M2⋅/M8+ M1⋅M8=M10 superior levels commutation
for the second aggregate
M3⋅(M9+M6)⋅/M4=Q1=M6 starts the first aggregate
M3⋅(M10+M7)⋅/M5=Q2=M7 starts the second aggregate

In fig.4 is presented the ladder diagram for the
minimal variant.

Fig.4. Ladder diagram

Maximal variant
This variant uses an industrial PC and an acquisition
card. The embedded software is written in assembly
language, for real-time working reasons.
In the first part, the control software tests the system
integrity. If defects or abnormal situations are
detected, the functioning will be interrupted, waiting
for their remediation. If everything is OK, follows
the parameters initialization, like: inferior level Ni,
superior levels Ns1 and Ns2, emergency, accumulation
flow qa, evacuation flows q1 and q2 etc.

In the running state the emergency transducers are
tested, and if an emergency is detected the entire
system is stopped.
There are implemented two running ways: manual
and automat. In manual running, the software
achieves only monitoring; the control is done by the
human operator. In automat running, the level
transducers are read. If the water is below the inferior
level Ni the pumps are stopped, waiting for the water
accumulation. If the water is over the superior level
Ns1 the P1 pump will be started. If it cannot evacuate
the water by itself and the water is over the superior
level Ns2 than the P2 pump will be started too.
In the above logic, the P1 pump is the main pump,
and the P2 pump is the auxiliary one. In order to
prevent the P1 pump over wear, because P1 will
function more than P2, there was introduced a pumps
cycling algorithm P1-P2-P1-… .
The program, written in I80X86 assembly language,
implements the algorithm described above. There
was designed a friendly dynamical graphic user
interface, that presents the animated functioning and
monitoring of the entire process.
Below is presented the main loop subroutine, and in
fig.5 the application main screen.

MainLoop proc near
 mov ax,nivelInf
agbcl4: mov LEDcul,40 ;40=red, 48=green
 call LedTradNi
 mov t,0 ; system initialization
 mov P1,0
 mov P2,0
 mov LEDcul,27 ;40=red,

48=green, 27=no color
 call LedTradP1
 mov LEDcul,27 ;40=red,

48=green, 27=no color
 call LedTradP2
 call OpresteP1
 call OpresteP2
 mov LEDcul,48 ;40=red, 48=green
 call LedTradNi
 mov nivel,ax
agbcl: call tasta
 jnc contML1
 jmp exitML
contML1: inc t
 call calcNiv
 mov ax,nivel
 add ax,nivelCalc
 mov x1,500
 sub x1,ax
 mov x2,500
 sub x2,ax
 mov y1,321
 mov y2,479
 mov culin,51
 call nilinie
 call RedoSenzorNi
 call RedoSenzorNs1
 cmp ax,NivelSup1

 jne agbcl
 mov LEDcul,48 ;40=red, 48=green
 call LedTradNs1 ; Ns1 was reached
 mov P1,1 ; P1 starts
 call PornesteP1
 mov LEDcul,48 ;40=red,

48=green, 27=no color
 call LedTradP1
 mov nivel,ax ; system re-initialization
 mov t,0
agbcl1: call tasta
 jnc contML2
 jmp exitML
contML2: inc t
 call calcNiv
 mov ax,nivel
 add ax,nivelCalc
 inc ax
 cmp ax,nivel
 jne creste0
 mov LEDcul,48
 call LEDtradNs1
creste0: dec ax
 mov x1,500
 sub x1,ax
 mov x2,500
 sub x2,ax
 mov y1,321
 mov y2,479
 cmp ax,nivel
 jae creste
 mov culin,27
 dec x1
 dec x2
 mov y2,450
 call nilinie
 mov y1,470
 mov y2,479
 call nilinie
 mov y1,321
 jmp des2
creste: mov culin,51
 call nilinie
des2: call RedoSenzorNi
 call RedoSenzorNs1
 call RedoSenzorNs2
 cmp ax,nivelSup2
 jae agbcl2
 cmp ax,nivelInf
 ja agbcl11
 jmp agbcl4
agbcl11: jmp agbcl1
agbcl2: mov LEDcul,48 ;40=red, 48=green
 call LedTradNs2 ; Ns2 was reached
 mov P2,1 ; P2 starts
 call PornesteP2
 mov LEDcul,48
 call LedTradP2
 mov LEDcul,40
 call LedTradNs2 ; Ns2 was reached
 mov nivel,ax ; system re-initialization
 mov t,0

agbcl3: call tasta
 jnc contML3
 jmp exitML
contML3: inc t
 call calcNiv
 mov ax,nivel
 add ax,nivelCalc
 inc ax
 cmp ax,nivelSup1
 jne scade0
 mov LEDcul,40
 call LEDtradNs1
scade0: dec ax
 mov x1,500
 sub x1,ax
 mov x2,500
 sub x2,ax
 mov y1,321
 mov y2,479
 mov culin,27
 mov y2,450
 call nilinie
 mov y1,470
 mov y2,479
 call nilinie
 call RedoSenzorNi
 call RedoSenzorNs1
 call RedoSenzorNs2
 cmp ax,nivelInf
 ja agbcl3
 jmp agbcl4
exitML: ret
MainLoop endp

Fig.5. Application main screen

4. EXPERIMENTAL RESULTS

In fig.6 are presented several program running
examples for normal accumulation flow when only
one pump is running, for big accumulation flow
when both pumps are running and an emergency
case.

Fig.6. System running: a) Water caption; b) One pump running; c) Second pump start; d) Both pumps running

5. CONCLUSIONS

• Control algorithm implementation can be done

in two ways, depending on the process
complexity. In case of simple processes, the PLC
can be used. In case of complex processes the
embedded software controller must be used.

• These solutions reduce at least 30% of the
present electro-mechanical equipments.

• Automatic control leads to minimizing the power
load peak.

REFERENCES

Pop, E. (1983). Automatizări în industria minieră.
Editura Didactică şi Pedagogică, Bucureşti.
Pop, E. and Leba, M. (2003). Microcontrollere si
automate programabile. Editura Didactică şi
Pedagogică, Bucureşti.
Pop, E. and Pop, M. (1999). Programare în limbaj de
asamblare I80X86. Editura Didactică şi Pedagogică,
Bucureşti.
*** (2003). MatLab Simulink Users Guide.
MathWorks.

