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Abstract: The paper investigates the development of the a type of a Co-Active Neuro-
Fuzzy System (CANFS) and its application to Fault Detection and Isolation (FDI).
Hybrid learning, based on a fuzzy clustering algorithm and a gradient-like method, is
used to train the CANFS. The experimental case study refers to the component fault
diagnosis of a Three-Tank System. A neuro-fuzzy simplified observer scheme is used to
generate the residuals (symptoms) in the form of the one-step-ahead prediction errors.
These are further analysed by a neural classifier in order to take the appropriate decision
regarding the behaviour of the considered process.
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1. INTRODUCTION

During the 1990s, fault diagnosis have become an
important field of automatic control with a goal
focussed on the detection and isolation of process
faults or malfunctions and the diagnosis of
undesirable system behaviour. Usually, a fault
manifests as a deviation of at least one characteristic
property or variable of the process with respect to the
corresponding nominal values.

A fault diagnosis system should satisfy requirements
such as early detection of small faults with abrupt or
incipient time behaviour, diagnosis of faults in
different parts of the investigated (supervised)
process, detection of faults in closed-loop and
supervision of the process in the transient states. All
these requirements should be satisfied in the face of
the existing measurement uncertainty, disturbances
and incomplete knowledge about the process. An
efficient fault diagnosis system should avoid
interpreting the unknown inputs (disturbances,
measurement noise, modelling errors) as faults, i.e.
false alarms.

Process control and supervision often require
accurate process models. Most processes are non-
linear and, therefore, their model should be non-
linear (Patton et al., 2000). Neural networks have
been shown to possess good non-linear function
approximation capabilities and have been used in
non-linear process modelling.  They can also cope

with the roubustness problem in FDI. However, the
neural model obtained is considered to be a “black-
box” model since it is difficult to interpret.

Within a specific operating region, a linear model can
approximate the non-linear process behaviour with a
reasonable accuracy. Takagi and Sugeno (1985) used
a fuzzy modelling approach in which each model
input is assigned with several fuzzy sets
characterised by a membership function. Through
logical combination of these fuzzy inputs, the model-
input space is partitioned into several fuzzy regions.
A locally linear model is used within each region.
The global model output is obtained through the
weighted average of the local model outputs.

In the Tagaki-Sugeno fuzzy model, the local linear
models can be replaced by neural networks. In this
way, a non-linear neural model is developed in each
fuzzy partition of the input space. For this purpose,
the Functional-Link Neural Networks (FLNNs) are
used. This new structure is implemented by a Co-
Active Neuro-Fuzzy System (CANFS) that combines
the capability of fuzzy reasoning in handling
uncertain information and the capability of neural
networks in learning from examples (Jang, 1995).

In order to be used to model a non-linear dynamic
system, the CANFS should be equipped with
dynamic elements. An approach is to use external
delay elements.

Process input-output data are used to train the



CANFS, i.e. to determine the parameters that would
minimise a performance index. Firstly, a fuzzy
clustering algorithm is used to determine the number
of fuzzy operating regions and the initial values for
the membership functions. Then, gradient-based
learning algorithm is applied in order to refine the
parameters of the membership functions and to
determine the parameters of the local neural models
(Jang, 1995; Zhang and Morris, 1996).

The paper is organised in six sections as follows. In
Section 2, the principles of fuzzy and neuro-fuzzy
modelling are presented. The architecture and the
learning procedure for CANFS are presented in
Section 3. Section 4 refers to the design of an FDI
system based on CANFS (residual generation) and
neural networks (residual evaluation). The
application of the CANFS to the component fault
diagnosis of a laboratory setup (the Amira’s Three-
Tank System) is presented in Section 5. The
conclusions are given in Section 6.

 
2. FUZZY MODELLING

The Fuzzy Inference System (FIS) is a framework
based on the concepts of fuzzy sets, fuzzy rules and
fuzzy reasoning. It has been successfully applied in
fields such as automatic control, data classification,
decision analysis and computer vision. The basic
structure of a FIS consists of three main components:
(1) a rule base which contains a selection of fuzzy
rules, (2) a database which defines the membership
functions used in fuzzy rules and (3) a reasoning
mechanism which performs the inference upon the
rules and a given condition to derive a reasonable
conclusion (output).

One of the most applied FIS structures is the Sugeno
fuzzy model proposed by Takagi and Sugeno in
(Takagi and Sugeno, 1985). A typical fuzzy rule in a
Takagi - Sugeno fuzzy model has the form:

Rule i:
if x1 is A1 and x2 is A2 and ... and xn is An then

),...,,( 21 ni xxxfz = ,

where n,...,1j,A j =  are fuzzy sets in the antecedent
part of i-th rule, while )x,...,x,x(fz n21i =  is a crisp
function in the consequent part of i-th rule. Usually,

)x,...,x,x(f n21  is a polynomial in the input
variables n,...,1j,x j = , but it can be any function.

Each fuzzy rule can be interpreted within a local
modelling framework. The consequence function

)x,...,x,x(f n21  of each rule can be considered to
constitute a local model, defined by a set of
parameters. The antecedent part of each rule, defined
by the fuzzy sets: n,...,1j,A j = , determines the
regime of each local model or a subset of the input
space over which this local model applies. The rule
firing strengths defined by:
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give the validity function of each local model. Since
each rule has a crisp output, the overall output is
obtained via weighted average:
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where iw  are the firing strengths of i-th rule (Jang,
1995) and M is the number of fuzzy rules.
 A fuzzy model with neural local models can be
implemented by a special type of neural network,
namely the Co-Active Neuro-Fuzzy System
(CANFS) (Jang, 1995). In this approach, function

)x,...,x,x(f n21  is implemented by a functional-link
neural network. 
 The identification of dynamic systems requires
models with adequate memory. For this reason, the
CANFSs have to be provided with dynamic elements
and appropriate learning methods (Mirea and Marcu,
2002). An approach approach refers to CANFS with
external dynamics (Jang, 1995; Zhang and Morris,
1996), i.e. static CANFSs provided with external
cascades of filters.
 
 

3. CO-ACTIVE NEURO-FUZZY SYSTEMS

The proposed CANFS architecture is presented in
Fig. 1. In contrast with the Takagi-Sugeno fuzzy
modelling approach, in this case each local model is
described by a neural network. Functional-Link
Neural Networks (FLNNs) are considered.

The FLNN has been developed as an alternative
architecture to the multi-layer perceptron network
with application to function approximation and
pattern recognition. The FLNN is a feed-forward
single layer neural network with a number of
enhancement nodes referred to as functional links.
These are used as supplementary inputs within the
network (Pao, et al., 1994). In the following, the
functional expansion given by a sub-set of
orthogonal trigonometric functions is considered.
This provides a more compact representation of the
function to be approximated, in the mean-square
sense, than other orthogonal basis functions (Patra, et
al., 1999).

The generic structure of an FLNN is depicted in
Fig.2, where the initial inputs of the net un, n=1,...,P,
are functionally expanded to constitute the actual
inputs of the non-linear neuron, vm, m=1,...,P+R. One
considers in the following the functional expansions
given by a sub-set of orthogonal trigonometric basis
functions and the output node with a hyperbolic-
tangent non-linearity. This choice is based on the
analysis and results presented in (Chen and Wan,
1999; Pao et al., 1994, Patra and Pal, 1995; Patra et
al., 1999).

For a pre-specified order S of the functional
expansion, the actual inputs vm of the neuron are
given by the following set:

P,...,1nS,...,1snnn }}ussin(),us{cos(,u{ ==π⋅π⋅ .
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Fig. 1 The architecture of the considered CANFS
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Fig.2 The structure of a Functional-Link Neural
Network

Thus, the local model output is given by:
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where M is the number of the fuzzy rules.

Every node in the 1st layer is an adaptive node with
the output defined by )u( pA i,p

µ , i=1,...,M, p=1,...,P,

where pu  is the input to the node and i,pA ,
M,,1i K=  are the fuzzy sets associated with this

node. The outputs of the first layer represent the
membership values of the antecedent part of the
rules. The membership functions can be any
appropriate parameterised membership function,
such as the Gaussian function:
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In relation (4), c represents the centre of the
membership function and σ  determines the
membership function’s width. Parameters in this
layer are referred to as premise parameters.
The 2nd layer consists of fixed nodes, which
multiplies the incoming signals:
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In fact, each node output represents the firing
strength of a rule.  Instead of the product, any other
T-norm operator can be used to perform the fuzzy
AND operator.

Every node in the 3rd layer is a fixed node that
computes the normalised firing strength of the i-th
rule:
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The 4th layer consists of adaptive nodes with the
output given by ]k[zw ii ⋅ , where iw  is the output of
the third layer and ]k[z i  is given by relation (3). The
parameters in this layer, { p,ia , iθ , j,ib , l,id } will be
referred to as consequent parameters.

The 5th layer has a single fixed node that computes
the overall output of CANFS as a summation of all
incoming signals:

∑
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M
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As a system is usually monitored using sampled data,
a discrete time representation of the process is
required. The purpose is to identify neuro-fuzzy
models for each system output, i.e. Multi-Input
Single-Output (MISO) models (Mirea & Marcu,
2002).

For dynamic system identification, these models
require spatial representation of time. This is
assessed by feeding the CANFS with current and
delayed values of the inputs and the outputs of the
process (Mirea & Marcu, 2002). For the sake of
simplicity, a Single-Input Single-Output (SISO)
dynamic system is considered.

Thus, the input-output model obtained using an
CANFS is:

])kk[y],...,1k[y
],kdk[u],...,dk[u(f]k[ŷ

yPP

uPP

−−
−−−=

, (8)

where Pu  denotes the process input, Py  represents
the process output, and ŷ  denotes the approximated
output given by the trained CANFS. In relation (8), d
denotes the dead time and ku, ky represents the
dynamic orders of the process.



One considers N data pairs collected from the inputs
and outputs of the process. In the training stage, the
CANFS parameters, collected in a vector ξ , are
adapted in order to minimise a quadratic
performance index such as the sum-squared error
between the CANFS output, ]k[ŷ , and the
considered process output, ]k[yP . The objective is to
ascertain an optimal parameter set *ξ  of the CANFS
that minimises the considered performance index:
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A method to select the number of fuzzy rules and the
initial values for the premise parameters, based on
the training data, is to use a fuzzy clustering
algorithm (Chiu, 1994; Mirea & Marcu, 2002). The
purpose of the fuzzy clustering algorithm is to distil
natural groupings of the CANFS input data set,
producing a concise representation of the system’s
behaviour. Finally, a number of cluster centres are
obtained. For each data point a degree of
membership to each cluster is computed (Marcu,
1996; Mirea & Marcu, 2002). Based on these values,
the standard deviations of each Gaussian
membership function are obtained. The resulting
cluster centres and standard deviations are used as
initial values for the premise parameters and are
found using the following gradient method:
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Relation (10) is used to adapt the consequent
parameters as well. For these parameters, an
initialisation with small random values is applied. In
relation (10), ς  is one of the ANFS-LRS premise or
consequent parameters and η  is the learning rate.

4. NEURO-FUZZY DESIGN OF FDI SYSTEM

4.1 Residual generation

For the generation of symptoms, the ANFS-LRSs
replace the analytical models that describe the
process. Instead of a multi-input multi-output
structure, an CANFS model for each system output is
identified, i.e. a MISO model. As the control system
operates in closed-loop, faults tend to be hidden by
feedback action. Thus, both inputs and outputs of the
process are used as inputs of the CANFS.

The neuro-fuzzy models can be then used in an
observer-like arrangement (Marcu et al., 2001).
Structured sets of symptoms are generated to enable
a unique fault diagnosis. This is based on residual
signals that are obtained by subtracting the
approximations of an observer scheme from the
corresponding process measurements. The Neuro-
Fuzzy Simplified Observer Scheme (NF-SOS) is
described in the sequel. Its design is based on the use
of CANFS introduced previously. It is further
applied to the considered case study.

The Neuro-Fuzzy Simplified Observer Scheme (NF-
SOS). One considers a process with I inputs uP,i[k],
i=1,...,I and O outputs yP,j[k], j=1,...,O, all known at
sampling time [k]. The NF-SOS consists of a number
of MISO neuro-fuzzy systems with each one driven
by all inputs and outputs of the process. Each
CANFS estimates one output of the system:
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where I,...,1ii,PP ]]k[u[]k[ ==u  is the vector of process
inputs and ,...,O1jP,jP [k]][y[k] ==y  is the vector of
process outputs.

The resulting bank of neuro-fuzzy models
approximates all outputs of the process. The training
of the CANFSs is based on the system data
corresponding to its normal behaviour. The following
residuals are then generated:

O,...,1j];k[ŷ]k[y]k[ jj,Pj =−=ε (12)

These patterns of change are further used to detect
and locate the faults.

4.2 Residual evaluation

The residual evaluation stage is actually a
classification task.  This means to match each pattern
of the residual vector with one of the pre-assigned
classes of faulty behaviour, if available, and the fault-
free case, respectively (Marcu et al., 2001).

The uncertainty in classification of patterns may arise
here from the overlapping nature of various classes.
For fault diagnosis this is a realistic assumption,
especially when incipient faults have to be detected
and isolated. Therefore, a robust decision can be
achieved by using a neural network as pattern
classifier (Marcu et al., 2001). The static Multi-Layer
Perceptron (MLP) with sigmoid neurons is
considered here.

The neural classifier maps the patterns (12) from the
residual space into a decision space. The patterns
belonging to a class are made to cluster around pre-
selected points, optimally chosen (Marcu et al.,
2001). A fault is detected and isolated if an unknown
input pattern is mapped closest to one of the decision
space target vectors. That multi-dimensional point
corresponds to the associated learned class that
reflects a fault.

A fault is only detected if the input pattern is mapped
far from all learned classes. For the latter case, that is
a new (faulty) situation, only the synthesis of the
classifier must be reconsidered for further fault
diagnosis. One simple criterion used in the decision
logic is based on the minimum Euclidean distance to
the target vectors of the classifier.

5. EXPERIMENTAL RESULTS

The methodology presented is assessed by using real
data from the Three-Tank System laboratory setup



(Amira, 1993). The study refers to the component
fault detection and isolation. The experimental set-up
consists of three cylindrical tanks with identical cross
sections being filled with water. Circular pipes
interconnect the tanks (Fig. 3).

h1
(t)

T1

h3
(t)

T3

h2
(t)

T2

����������

leak outlet

pump 1
1(t) 2 (t)

pump 2

L1 L3 L2

C13 C32 C20

q q

Fig. 3. The Three-Tank System DTS200.

An analytical model of the system is represented by
three first-order non-linear differential equations.
That model is used by an appropriate strategy to
control the water inlet by two pumps. The volume
flows )(and)( 21 tqtq  of lateral tanks T1 and T2,
respectively, are controlled such that the level in the
corresponding tanks, )(and)( 21 thth , are pre-
assigned independently. The level )(3 th , in the
middle tank T3, is uncontrollable. Here t stands for
the time variable. The control strategy works at a
sampling rate of 0.1 seconds. Although the dynamic
modelling of the considered system is relatively
simple, the resulted non-linear analytical model is a
limited approximation (Marcu, et al., 1999).

The connecting pipes and tanks are additionally
equipped with manually adjustable valves and outlets
for the purpose of simulating clogs and leaks. Four
classes of process behaviour have been taken into
consideration. These are the normal behaviour (one
class, [NB]: valves C13, C32, C20 are open, outlets L1,
L3, L2 are closed) and incipient faults. The latter
refers to a leakage in each tank (three classes, [L1],
[L3], [L2]). The simulated faults correspond to about
20-25% opening of the involved outlets.

For the experiments, the reference values of the
liquid levels in the lateral tanks were changed pulse-
wise with different magnitude and duration for each
controlled tank. A test period of 400 seconds was
considered. The system data were sampled at every 5
seconds, due to the slow nature of the process.
Thirty-five experiments were done in a period of a
month in order to take into consideration the
influence of the plant environment.

A NF-SOS has been synthesised, based on the
CANFSs. The neuro-fuzzy observer has been
designed using the real data corresponding to the
normal behaviour of process. The purpose is to
obtain neuro-fuzzy models for each system output,
i.e. the measured liquid levels in each tank:
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 where 2,1ii ]]k[q[]k[ ==q  and 3,2,1ii ]]k[h[]k[ ==h
represent the vector of process inputs and the vector
of process outputs, respectively. The CANFSs were
used to determine the unknown functions if . They
were trained using the algorithm described in Section
3. The resulted CANFS models consist of 3÷4 rules
and the expansion orders of the FLNN local models
are in the set {1, 2}.

Figures 4 and 5 illustrate some of the obtained
experimental results. In these figures, the outputs of
the process (solid line) are compared with the outputs
of the corresponding identified CANFS models
(dotted line).

Figures 4(a) and 5(a) illustrate the generalisation
capability of the obtained CANFS models. In this
case, process data corresponding to the normal
behaviour, different than the training data, were used
to feed the CANFS models. One observes that the
developed CANFS models have good generalisation
properties, i.e. are able to approximate with good
precision, data different than the data used in the
training stage corresponding to the normal behaviour
of the process.

(a)

(b)

Fig.4 Three-tank system, output h1 of the process and
of the CANFS model trained for the [NB] class

Figures 4(b) and 5(b) present the response of the
CANFS models developed for the normal behaviour
of the process, when data corresponding to a faulty



behaviour are presented to their input. One observes
the big difference between the output of the process
and the output of the CANFS models. This can be
used as symptom of that fault, indicating that the
current behaviour of the process is not normal.

(a)

(b)
Fig.5 Three-tank system, output h2 of the process and

of the CANFS model trained for the [NB] class

The residuals in the form (12) are generated and a
neural classifier is designed to analyse them. For this
purpose, a MLP network with two layers of sigmoid
neurons is used. The hidden layer of the neural
classifier has 15 neurons. The obtained classification
results are presented in Table 1.

Table 1:  Three-tank system, performance of
diagnosing systems (recognition rates [%])

global 99.51
Training normal 100

faulty 99.34
global 96.7

Testing normal 97.35
faulty 96.7

6. CONCLUSIONS

This paper investigates the development of a new
neuro-fuzzy system with neural consequent part of
the fuzzy rules and its application to component fault
diagnosis (fault detection and fault isolation) of a
Three-Tank System. The experimental results
obtained by using the suggested neuro-fuzzy system
reveal its good performances of approximation and
generalisation. This application of fault diagnosis

leads to good results, as reflected in a recognition
rate of around 97%.

Further research will investigate the development of
a new class of co-active neuro-fuzzy systems with
internal dynamic elements and their application to
fault detection and isolation. This will allow for an
increase of the generalisation performances of the
CANFS.
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