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Abstract: This paper deals with dynamical systems which models physical objects 
whose causal input-output ordering is changing during their evolution. Such a system is 
named Variable Causality Dynamical System (VCDS). VCDSs are controlled from 
outside by a new input called causal ordering signal sharing the same set of state 
variables. In VCDS all the variables, except the causal ordering signal, are gathered in 
two forms of so called global variables as current global variable and desired global 
variable. In this paper different approaches of the causality concept are analysed and 
there are proposed formal definitions for covariance and causality properties of 
variables and relations irrespective of the time domain. An example of nonlinear VCDS 
is presented here but many applications in walking robots of the VCDS approach are 
developed including simulations in Matlab environment. 
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1. INTRODUCTION 

The causality concept is a very general one and it still  
is not precisely defined. Causality is a subject of 
debates in very different scientific communities from 
philosophy, biology, till technical and social 
sciences.  
The structure of the so-called causal theories and 
some fundamental forms of scientific inference are 
developed in /4/. According to this approach, a causal 
law is a statement that a change in the value of one 
variable is sufficient to produce a change in the value 
of another, without the operation of intermediate 
causes.  
There are several different conceptions of cause as 
Positivist and Essentialists theories of causation, /11/. 
The first conception stresses the observations of 
regularities and from this point of view, high 
correlations demonstrate or are synonymous with 
causation. Actually, the causation is denied or it is 
considered a useless concept, saying, " Do not waste 
your time with unobserved entities.  
On the other side in the Essentialists theories of 
causation, it is considered that, "Cause should only 
be used to refer to variables that explain phenomena 

in the sense that these variables, when taken together, 
are both necessary and sufficient for the effect to 
occur ", /11/, pp.5.   
In the conception Stuart-Mill, /11/, three main factors 
determine an inference to be causal: a) Cause has to 
precede the effect; b) The cause and effect have to be 
related; c) Other explanations of the cause-effect 
relationship have to be eliminated. 
Among the methods of causal inference analysis, in 
/11/ are mentioned:  
1. Method of Agreement states an effect will be 
present when the cause is present, that means the 
cause is sufficient for the effect to occur. 
2. Method of Differences states the effect will be 
absent when the cause is absent, that means the cause 
is necessary for the effect to occur. 
2. Method of Concomitant Variations which implies 
that when both of the above relationships are 
observed, causal inference will be all the stronger 
since certain other interpretations of the covariation 
between the cause and effect can be ruled out. 
There are many ways of knowing and different 
cultures uses different expectations and norms about 
causality, so much of the research process centers 
around what are the true causal or independent 



variables /8/. Here some rules for cause and effect in 
nonexperimental studies are established.  
One important direction of modeling that rise the 
problem of causality is that of the bond graphs, /2/, 
/3/, /10/. The so called hybrid bond graph augment 
traditional bond graph by a variable causality 
switching element to facilitate models with mixed 
continuous/discrete, hybrid behavior. 
Bond graphs rely on a small set of basic elements 
that interact throughout power bonds. These bonds 
are acausal and connect to ports, /10/. 
As it is stipulated in /3/, pp.3, an important 
consequence of an interconnection of submodels 
according to the physical structure of the overall 
system model is that submodels must be acausal. 
This corresponds to interconnect acausal bond graph 
submodels and to assign causalities to the overall 
bond graph after the hierarchy has been resolved. 
The causal form of element equations is governed by 
the interconnections of submodels. If a model 
contains ideal switches, their state dependent 
causality is expressed in a textual language /3/. 
An investigation of causal state theory and graphical 
causal models with applications in computational 
mechanics and the so called ε-machines is developed 
in /6/. 
The problem of variable causality applied to power 
electronic converters is analyzed in /5/. 
In /12/ it is argued that a regularity notion of 
causality can only be meaningfully defined for 
systems with linear interactions among their 
variables, with particular reference to the problem of 
causal inference in complex genetic systems. 
A new approach of dynamical systems conceived by 
Willems /13/, /14/, ignores the input-output causal 
ordering. It defines the so called the behavioral 
approach of dynamical systems formed by the 
triptych with the behavior of the system in the center, 
the behavioral equations and latent variables as side 
notions. 

2. CAUSAL VARIABLES AND CAUSALITY 
RELATIONS 

The fundamental notion in mathematical modeling of 
objects (physical or abstract) is that of variable. A 
variable V is the triple 
 {v ,V , , v VV = ∈ ⊆V} V   (1) 

where: V named variable universe, is a set endowed 
with a well defined mathematical structure; V named 
variable domain, is a subset of V ; v  named the 
variable instant, is the generic element of V . 
The variable V is finite dimensional of the order p if 

it exists an one-to-one application pV →R . The 

instant v  of an n-dimensional variable can be 
presented as a p-tuple of scalar (one dimensional) 

instants, i
i 1:pv {v } == . 

Let i j( , )V VR be a binary relation on the Cartesian 

product i jV V× , called a relation between the 

variable iV and jV , 

 i j i j i j( , ) V VV V ⊆ × ⊆ ×R V V .  (2) 

Such a relation, as a crisp relation, can be expressed 
by its membership function (characteristic function), 

 i j
R i j

1 if (v , v )
(v , v )

0 otherwise

i j(V ,V )∈µ = 


R
 (3) 

A relation can be described by an equation defined as 
an equilibrium condition /15/, on an equating space 
E  
 1 i j 2 i j 1 2 i jf (v , v ) = f (v , v ) , f , f : V V× → E . (4) 

If the equation space E is a finite m-dimensional 
linear space, then the equilibrium condition (4) can 
be expressed as an equation  
 i jR(v , v ) 0=  ,    (5) 

where  
 i j 1 i j 2 i jR(v , v ) f (v , v ) f (v , v ) 0= − =  

 i jR : V V× → E . 

The equilibrium equation (5) is called the existence 
equation for the relation (2), if each pair 

i j i j(v , v ) ( , )∈ R V V  verifies equation (2) and any 

solution i j(v , v ) of i jR(v , v ) 0= , belongs to 

i j( , )V VR . In such a case, there is the equivalence 

 i j i j( , ) R(v , v ) 0⇔ =R V V    (6) 

Such a relation is an m-order relation, which involves 
m restrictions on its variables. 
A relation i j( , )V VR  is well defined if its projection 

on each variable universe equals to the corresponding 
variable domain, 

i j i iPr{ ( , ) / } V=R V V V    (7)   

 i j j jPr{ ( , ) / } V=R V V V    (8) 

where 

i j i i i j j i jPr{ ( , ) / } {v V , v V , (v , v ) 1}= ∈ ∃ ∈ µ =RR V V V  

       (9) 

i j j j j i i i jPr{ ( , ) / } {v V , v V , (v , v ) 1}= ∈ ∃ ∈ µ =RR V V V  

       (10) 
are the projection of R  on the universes iV , jV  

respectively. 
Two variables, i j,V V  are covariant variables if there 

is a nonempty set of index A ∋ α  and a nonempty set 
variables 
 A A{ }Gα α∈=G , {g ,G ,Gα α α α= G }  (11) 
called the set of intermediate variables, such a way 
for each intermediate variable Gα  there are two 

families of  functions 
iX

F α
α , 

jX
F α

α  called  covering 

functions of the relation 

i i i i i i
iX x x X x

{f } , f : G Vα α α α α α
α α α

α∈ ⊆= →F
X

,  (12) 



j j j j j j
jX x x X x

{f } , f : G Vα α α α α α
α α α

α∈ ⊆= →F
X

  (13) 

so that each family cover the relation 

 
i

i x
v f ( )gα

α
α= , 

i

i i

ix
x X

f (G ) Vα
α α

α
α

∈

=∪   (14) 

 
j

j x
v f ( )gα

α
α= , 

j

j j

jx
x X

f (G ) Vα
α α

α
α

∈

=∪ . (15) 

The two families 
iX

F α
α , 

jX
F α

α   are called parameter 

families of functions. 

The triple 
i jx x

{ , f , f }α α
α αα  is called an instant of the 

covariant variables i j,V V and relations (14), (15) 

express one parametric representation of  the two 
covariant variables.  
The parametric representation (14), (15) may be 
expressed also as 

 i i iv f ( , x )gα α
α=      (16) 

 j j jv f ( , x )gα α
α= ,    (17) 

where ixα , jxα are instants of the new variables, 

 i i i i{x ,X , }X α α α α= X ,    (18) 

 j j j j{x ,X , }X α α α α= X     (19) 

called state variables. 
The covering conditions on the families of parametric 

functions 
i jx x

f , fα α
α α  will assure each variable iV and 

jV to be completely involved in the covariance, 

namely 

 
i i

i i x X
v V , ( A,g G ,f )α α

α α
α α∀ ∈ ∃ α ∈ ∈ ∈F  (20) 

so that  

 
i

i i ix
v f (g ) f ( , x )gα

α α α
α α= =    (21)  

or, 

 
j j

j j x X
v V , ( A ,g G ,f )α α

α α
α α∀ ∈ ∃ α ∈ ∈ ∈ F  (22) 

so that  

 
j

j j jx
v f (g ) f ( , x )gα

α α α
α α= = .   (23) 

So for each pair i j i j(v , v ) ( , )∈ R V V , and each family 

iX
F α

α  or 
jX

F α
α  ,  it exists a function whose graphic to 

contain this pair i j(v , v ) . These families are labeled 

by the variables i j,X Xα α , which become state 

variables. 
If relations (20), (21) are true it is not necessary (22), 
(23) to be true too and vice-versa. 

One instant 
i jx x

{ , f , f }α α
α αα  of two covariant variables 

i j,V V  defines a relation, called covariance relation, 

i j
i j i j i jX X

( , ) V VV Vα α
α ⊆ × ⊆ ×R V V    (24) 

i j
i jX X

( , )V Vα α
α =R  

i j
i j i jx x

{(v , v ), v f (g ), v f (g ), g G )α α
α α

α α α α= = = ∀ ∈  

whose membership function is, 

i j

X Xi j

i j i jX X
i j

1 if (v , v ) ( , )
(v , v )

0 otherwise

V Vα α

α
α α

α ∈µ = 


R

R
 (25) 

Because the relation 
i j

i jX X
( , )V Vα α

αR could be different 

of i jV V× , reflects the covariant character of the two 

variables. 
Two variables i j,V V are well covariant if for any 

instant 
i jx x

{ , f , f }α α
α αα  the set of correlated pairs 

i j
i jX X

( , )V Vα α
αR is the same, which denoted ij i j( , )V VR  

i j i j
i j ij i jX X x x

( , ) ( , ) , { , f , f }V V V Vα α α α
α α α= ∀ αR R  (26) 

Between two well covariant variables, i j,V V  it exists 

a nonempty binary relation  

 ij i j i j i j( , ) V VV V ⊆ × ⊆ ×R V V   (27) 

but does not exist a function type dependency 
between them. 
The covariance relation (26) can be expressed by an 
equilibrium equation 
 ij i j i j i j i jR (v , v ) 0,(v , v ) V V= ∈ × ⊆ ×V V (28) 

but has no pysical meaning to withdraw from it the 
function type dependencies i i jv f (v )= or j j iv f (v )= .  

Two variables i j,V V  are called independent variables  

if  it is not posible to establish a covariance relation 
between them.  
The variables i j,V V  are  independent if one of the 

three conditions takes place:  
 A = ∅  or  A = ∅G     (29) 

 
iX

, Aα
α = ∅ ∀α ∈F      (30) 

jX
, Aα

α = ∅ ∀α ∈F     (31) 

Two any variables i j,V V which could be covariant 

but for which a covariance relation is not established 
yet are called uncharacterized variables. 
Uncharacterized variables are considered to be 
independent variables.  
 
Two covariant variables i j,V V  characterised by 

i j
A X X

A, ,F , Fα α
α αG are called causal variables if 

 1 2 1A { , } , ij, ji= α α α = α =2   (32) 

 
1 2A ij ji i j{ , } { , } { , }G G G G V Vα α= = =G  (33) 

 
i jX X

F , Fα α
α α≠ ∅ ≠ ∅ .    (34) 

The parametric representation (16), (17) takes the 
following two explicite forms (35), (36) and (39), 
(40).   
For  1 ijα = α =   

 1ij ij ij ij
i ii i i i iv f (v , x ) , x X Xα= ∈ =    (35) 

 1ij ij ij ij
j ij j j j jv f (v , x ) , x X Xα= ∈ = ,  (36) 



which illustrates the so called causality i jV V→  

where ij ij
i jx , x  are the state instants of the respectively 

variables i j,V V  in this causality ordering. The two 

state variables are, 
1 1 1 1 ij ij ij ij

i i i i i i i i{x ,X , } {x ,X , }X Xα α α α= = =X X ,  (37) 

1 1 1 1 ij ij ij ij
j j j j j j j j{x ,X , } {x ,X , }X Xα α α α= = =X X  (38) 

For  2 jiα = α =  

 2ji ji ji ji
i ji i i i iv f (v , x ) , x X Xα= ∈ =    (39) 

 2ji ji ji ji
j jj j j j jv f (v , x ) , x X Xα= ∈ = ,  (40) 

which illustrates the so called causality j iV V→  

where ji ji
i jx , x  are the state instants of the 

respectively variables i j,V V  in this causality 

ordering. The two state variables are, 
2 2 2 2 ji ji ji ji

i i i i i i i i{x ,X , } {x ,X , }X Xα α α α= = =X X ,  (41) 

2 2 2 2 ji ji ji ji
j j j j j j j j{x ,X , } {x ,X , }X Xα α α α= = =X X  (42) 

Each state instant specify a function from the sets 

iX
F α

α , 
jX

F α
α . 

As the state variaable internally characterise a 
variable, the state variables attached to a variable 
must be the same irrespective of the causality 
ordering, so 

 ij ji
i i i ii i {x ,X , }X X X= = = X  

 ij ji
j j j jj j {x ,X , }X X X= = = X  

and the parametic equations  
Any binary relation between two covariant variables 
is  called covariance relation. 
Two variables i j,V V  are called causal variables if 

they are covariant variables with the intermediate 
variables set having one of the three form   
 i{ V }=Ø , j{ V }=Ø , i j{V , V }=Ø . (11) 

Any binary relation between two causal variables is 
called a causal relation. 
All the above notions can be extended to n-ary 
relations, 
 1 2 n( , ..., ) ( )=R RV V V V , 1 2 n{ , ..., }V= V V V (12) 

In addition, n variables 1 2 n, ...,V V V are covariant, 
independent or causal if any two variables of them 
have the above-defined properties. 

3. CAUSAL ORDERING IN DYNAMICAL 
SYSTEMS 

Several definitions of the system notion there are 
well known from any System Theory textbook /1/, 
/7/, /16/. According to the Webster's definition,  "a 
system is a set of physical objects or abstract entities 
connected or related by different forms of  
interactions or interdpendencies as to form an 
entirety or a whole" /9/. According to the definition 
issued from thermodynamics, " a system is a part ( a 

fragment) of the universe for which one inside and 
one outside can be delimited from behavioral point of 
view".   
The mathematical model of a physical system is a 
pair 
 { , }=S RV      (13) 

where i i=1:n{ }V= V is a set of variables and ( )=R R V  
is a causal relation between them.  
If  ip  is the order of the variable iV , then there are 

n

i
i=1

p p= ∑ scalar components of the variables 

involved in system. Suppose that the relation R  is of 
the order m . 
The system acts as a restriction among its variables 
and delimits its inside. All the other variables and 
relations different of V  and R , denoted V  and R  
belong to the outside of the system denoted by S  
 { , }=S RV      (14) 
as depicted in Fig. 1.  
 
 
 
 
 
 
 
 

Fig 1. The structure of an un-oriented system. 
          
This is the so-called an un-oriented system and it is 
similar to the model of Willems in his behavioral 
approach of systems /13/, /14/, /15/.  
As the model represents a physical system, the 
relation R , called also the existence relation, is true 
as far as the physical system exists. 
At this stage, looking at the un-oriented system S , 
we can observe only the instants of the variables 

i i=1:nv {v }= . One instant v  is a realization of the 
physical system and it verifies the existence relation 
R .  
The un-oriented system looks like an isolated one 
from the universe it belongs to, so any variable 

∈ SW is independent with respect to any variable 

i i=1:n{ }V of S . 

But, any physical system whose model is S , as a 
part of the universe, is not isolated one, it has 
changes of energy, material and information with the 
outside. 
Let kW  be a variable from the ouside of  S , 

 k k k k{w , W ,= ∈ SW W } .   (15) 

A variable k ∈ SW  is assigned to a variable i ∈ SV  

 i i i i{v ,V ,= ∈ SV V } ,   (16) 

denoted k i→W V  ,  if 

 k i=W V , k iW V⊆ , i kv w=   (17) 

1V
  

iV
  jV

nV
  { , }=S RV  

The outside The inside 
{ , }=S RV  



that means the instant iv  takes the value of the 

instant kw . Through this assignment process, a new 

variable j ∈ ∩S SU is created, 

 r r r r k i i{u , U , {w ,V ,=U U }= V } .  (18) 

The variable jU is a cause for the system S or an 

input variable. The set of variables 

k k=1,2,..{ }W assigned to the system S , could be 

independent variables which is not a necessary 
condition.  
 Let k k k k{y , Y ,= ∈ SY Y }  be a variable from 

outside. If  k j=Y V , k jY V= , k jy v=  then the 

variable j ∈ SV is assigned to the outside world so it 

becomes an output of the system S . This process of   
variables causal ordering is illustrated in Fig. 2. 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 2. The structure of a system with oriented variables. 

4. VARIABLE CAUSALITY  DYNAMICAL 
SYSTEMS 

 There are many physical systems where the causal 
ordering is controlled from outside expressed by a 
new variable  
 Bq Q {q }β β∈∈ =      (19) 

and the terminal variables 1 2 n{ , ..., }V= V V V  are 
some times inputs, and another time outputs. Let 

1 2 n{ , ..., }X= X X X be the state variables attached to 
each terminal variable in such a way to reestablish 
the univocity of the selected variables as being 
outputs with respect to the variables selected as to be 
inputs.  They are internal variables. 
In the case of VCDS description, there are no 
explicitly input and output variables. All the 
variables, terminal variables 1 2 n{ , ..., }V= V V V and 
internal variables, satisfy the existence relation of the 
system named System Existence Relation (ER) 

1 2 n( , ..., ) ( )=R RV V V V . 
As the system exist, the SER is true according to the 
causality ordering available at that time instant.   
Particularly let we consider that any variable without 
time index (t , k ) , depending of the context, to be 
interpreted its value at the continuous time or dicrete 
time. 
Let we denote by 
 1 2 n 1 2 n{ , ..., , , ..., }ξ= V V V X X X   (20) 

the current value of the so called global variable of 
the system and denote by 

 1 2 n 1 2 n
ˆ ˆ ˆ ˆ ˆ ˆ ˆ{ , ..., , , ..., }ξ= V V V X X X   (21) 

the desired value of the global variable. 
The VCDS evolution equation is of the form, 

 ˆf ( ,q)ξ = ξ      (22)   
For algebraic dynamical systems, the equation (22) 
takes the form, 

 t t t t
ˆf ( , ,q )+εξ = ξ ξ     (23)  

5. EXAMPLE 

Let us consider a sytem about it is known having a 

causal relation ij i j( , )V VR as in Fig. 3.a. 

In the causality ordering i jV V→  the causal relation 

can be covered by a unique function so the label set 

jX contains only one element, let we denote it 1
js  so  

1
j j jx X {s }∈ =  and the input-output relation, in this 

causal ordering is covered by a unique function  
ij 1

j i jjv f (v ,s )=  and the state transition equation is 

1
j j jx s , v= ∀ . 

The input-state-output relations in i jV V→  causality 

are: 

 ij
j i jjv f (v , x )=  

 1
j j jx s , v= ∀   

In the causal ordering j iV V→ , the causal relation 

ij i j( , )V VR is covered by three functions  

ji 1
i j iiv f (v ,s )= , ji

i j iiv f (v ,s )= 2 , ji 3
i j iiv f (v ,s )= as 

depicted in Fig 3.b, c, d. Now the label set 

iX contains three elements labeled 1 2 3
i i is ,s ,s  so the 

state instant is 1 2 3
i i i i ix X {s ,s ,s }∈ = . 

The input-state-output relation in j iV V→  causality 

are: 

 ji
i j iiv f (v , x )=  

1 0 1
i i i i

2 1 2
i i i i i

3 2 3
i i i i

s , v [v , v )

x s , v [v , v )

s , v [v , v ]

 ∈


= ∈


∈

 

The global variable is  
 i j i j{ , , }= V V X Xξ  

where 
0 3

i i i i i i i{v ,V , {v ,[v , v ],V = V }= R}  
0 3

j j j j j j j{v ,V , {v ,[v , v ],V = V }= R}  

         1 2 3 1 2 3
i i i i i i i i i i i{x , X , {x ,{s ,s ,s },{s ,s ,s }X = X }= }  

         1 1
j j j j j j j{x ,X , {x ,{s },{s }X = X }= }  

kW  

jY   iU  

{ , }=S RV  1V
  

iV
  

jV

nV
  

{ , }=S RV  
The outside The inside 



Such a variable causality structure is very easy to 
implement for simulations as an element 
interconnected with other dynamical subsystems. 
 
 
 
 
 
 
 
 
 
 
 
  a)    b) 
 
 
 
 
 
 
 
 
 
 
 

c) d) 
d)  

Fig 3. Example of a nonlinear VCDS. 
 

6. CONCLUSIONS 

This paper deals with dynamical systems which 
models physical objects whose causal input-output 
ordering is changing during their evolution. Such a 
system is named Variable Causality Dynamical 
System (VCDS). VCDSs are controlled from outside 
by a new input called causal ordering signal sharing 
the same set of state variables. In VCDS all the 
variables, except the causal ordering signal, are 
gathered in two forms of so called global variables as 
current global variable and desired global variable. 
There are proposed formal definitions for covariance 
and causality properties of variables and relations 
irrespective of the time domain. Applications in 
walking robots of the VCDS approach developed 
including simulations in Matlab environment prove 
the advantages of this approach. 
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