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Abstract. In this paper some linear and nonlinear
models of the electrohydraulical systems are analyzed
and reduced-order techniques are applied in order to
obtain useful models for control design. The exactly
linearization feedback technique and singular
perturbation method are widely analyzed and applied.
Computer simulations are included to illustrate the
behavior of the reduced-order models.
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1. INTRODUCTION

Electrohydraulic servovalves used in automatic systems
for position, speed and force tracking are equipment,
which are the interface between the electrical signals of
control and the hydraulic actuator. The electrohydraulic
servovalve is the essential element of all the
electrohydraulic servo-systems. In order to establish a
control law that assures the desired performances, it is
necessary to establish a mathematical model of the
servovalve, model that must be as exact as possible.
We must also notice the fact that the very small frictions
and the high hydraulic rigidity of this system (the very
small coefficients of damping) raise us some problems in
obtaining the needed performances. Another important
characteristic of these high order systems is also the
strong nonlinear character of the mathematical model.
Previous literature on electrohydraulic control systems
has incorporated the servovalve dynamics to various
extents. It is well known that these electrohydraulics
systems of high order cannot be controlled by a simple
law of type PID (the control based on tangent linearized
model with a simple feedback or a PID controller cannot
assure always the desired performances). In order to
design other control laws some authors ignore the
servovalve dynamics (Hayase et al. 2000).
Other authors who consider servovalve dynamics have
used either an assumed second-order model or a third-
order model. Nonlinear servovalve models have been
presented in several papers (Bobasu 2002a), (Bobasu
2002b), (Hayase et al. 2000), (Kim et al. 2000).
In order to take into account the nonlinearities of these
systems, some types of control laws have been
elaborated (the control law based on tangent linearized
model, the exactly linearizing control law, the robust and
the adaptive control law).

The establishment of these control laws was made only
for the models of reduced order and neglecting the
Coulomb friction force and the force due to the hydraulic
rigidity and the losses of the flow. The neglecting of
these losses and of friction must be done only after a
carefully analysis, because the system may become
uncontrollable and/or unobservable (Bobasu 2001).
The paper is organized as follows: in Section 2, the
models of the electrohydraulical systems are studied,
Section 3 deals with the reduction-order techniques for
these models and Section 4 presents the simulation
results and comparisons. Finally, Section 5 collects the
conclusions.

2. DYNAMICS MODELS OF
ELECTROHYDRAULIC SYSTEM

The electrohydraulic system shown in Fig. 1 consists of
a two-stage flow control servovalve and a double-ended
actuator. The servovalve has a symmetrical double-
nozzle and a torque-motor driven flapper for the first
stage, and a closed center four-way sliding spool for the
second stage. Figure 1 displays two types of feedback
spring commonly used: a cantilever spring connecting
the flapper and spool, and a spring directly acting on the
spool.

Fig.1 Schematic view of the electrohydraulic servovalve
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The nonlinear dynamic model presented next is a
compilation of results (Bobasu 2000b), (Hayase et al.
2000), (Kim et al 2000).

The torque-motor stage dynamics are given by
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where the flow force acting on the flapper is determined
by the pressure difference between the two nozzles has
the expression
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The flapper-nozzle stage dynamics are given by
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The force balance on spool is given by
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Note that ks=0 for a servovalve with a cantilever
feedback spring, and k f=0 with a direct feedback spring.

The flow continuity through actuator is given by
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The force balance on actuator is given by
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where:
u is the input voltage to servovalve; Ga gain of servo
amplifier; J moment of inertia of torque motor; R
resistance; L inductance of torque motor; l1 length of
flapper; l2 length of feedback spring; k f feedback spring
constant; k s stiffness of each direct feedback spring at the
spool; BF drag coefficient of flapper; xF displacement of
flapper measured from the center position; xs

displacement of spool measured from the center
position; α� gain of torque motor; 21 ccc AAA ==  cross-

sectional area of orifice; dc  nozzle flow coefficient; d

diameter of nozzle; 0u maximum flapper displacement;

As spool area; Bs damping coefficient of spool; θ angular
position of armature/flapper; 21 cc p,p  pressures on left

and right side of spool, respectively; E bulk-modulus of
fluid; c0 orifice flow coefficient; ps supply pressure; As

area of spool valve; xs spool position; ρ density of fluid;

0sV  enclosed volume on each side of spool when

0=sx ; Ms spool mass; w port width; ε underlap of

spool; pa, pb pressure in left and right cylinder chambers,
respectively; Va0=Vb0 enclosed volume on each side of
actuator where y=0; S effective area of double-ended
piston; M piston mass; Bc damping coefficient of
actuator; Fr the force introduced by the hydraulic
rigidity: cF  frictional force; Fd disturbance force input on

actuator; sgn denotes a sign function.
The order of nonlinear model for the electrohydraulic
system described by the equations (1)-(11) is 11. It is
difficult to apply the feedback linearization technique
directly to this rather complicated system.

3. REDUCED-ORDER MATHEMATICAL
MODELS

3.1. Nonlinear reduced-order models

The control laws designed for these systems are based on
a mathematical model of reduced order. In order to
obtain the needed performance, some nonlinear control
laws have been designed (feedback linearization
technique).
The reduction of these systems order is based on the
singular perturbations method. The electrohydraulic
servovalve is made by subsystems described by
differential equations with small parameter, which
multiplies the highest derivative. Due to the high value
of the bulk-modulus of fluid, to the low value of the fluid
occupied volume and also to the spool valve mass low,
the equations describing the dynamical behavior of the
spool valve can be considered singular perturbed
equations.
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As the first step we consider the simplified nine-order.
Pressure in the left and right side of spool 1cp  and 2cp
in the expression are given as
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Introducing Eqs. (12), (13) and (14) into Eq. (6), we
obtain the following relation
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In the expression (15) fs represents the driving force of
the spool as a nonlinear function of the spool velocity

sx&  and the displacement of flapper xF .

In order to obtain reduced model of the order 7 we also
consider that 02 =ε .

Pressure in the left and right cylinder chambers ap  and

bp  in the expression are given as
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Introducing Eqs. (16), (17) and (18) into Eq. (9), we
obtain the following relation
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In the expression (19), fp represents the driving force of
the piston as a nonlinear function of the piston velocity

py&  and the spool displacement xs.

Because the nonlinear mathematical reduced-order
models of the electrohydraulical system are not
analytical linear, the exactly linearization technique
through state feedback cannot be applied, and thus the
nonlinear control law cannot be obtained.
For that reason, in order to apply the exactly
linearization technique, we consider that the hydraulical
cylinder is controlled with two three-ways
electrohydraulical servovalves or with a single fifth-
ways electrohydraulical servovalve. Also, the motor-
torque dynamic and the dry friction are neglected.
Under these assumptions, the nonlinear mathematical
model of the electrohydraulical system is described by
the next differential equations:
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qi, qe are flow losses factors.
We are using the currents ia and ib as control variable. In
order to apply the nonlinear control law for the system
described by Eqs. (20)-(22), we first have to adjust it to a
special form. Therefore we consider that the flow factors
for the two servovalves are not depending with the
currents ia and ib and we will use two new control

variables *
aA and *

bA  witch are supposed to contribute

linear in state equations.
Thus, (23) and (24) will be changed by
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Introducing Eqs. (25)-(32) into Eqs. (20) and (21),
choosing as state variables xT=[pa,  pb,  vp,  yp] and the

inputs vector ( ) ( )[ ]b
*
ba

*
a

T iA,iAu = , the state space

representation (20)-(22) can be written as a linear-
analytical form:
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in which smooth vector fields f(x) and g(x) have the
following expressions
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For the system (33), a nonlinear control law can be
designed, both in the monovariable case (the
electrohydraulic system controlled by a fifth-ways
servovalve) and in the multivariable case (the
electrohydraulic system controlled by a three-ways
servovalve) (Bobasu et al. 1996).
In the paper (Hayase et al., 2000) it is considered that the
reduced model of order two which is obtained following
hypothesis: the dynamics of the torque motor, the
compressibility of the working fluid and the Coulomb
friction on the piston are all ignored, only retaining the
nonlinear pressure-flow characteristic of the spool valve.
In the simplified model the spool displacement is
proportional to the input signal xs=Ku.
In order to apply the exactly linearization technique,
Hayase has considered only the Eq. (19), and the
nonlinear system (19) coupled with the linearizing
control law has a double integrator behavior.

3.2. Linearized reduced-order models

The derivation of the linearized model with respect to an
equilibrium state from the above nonlinear model is

tedious but straightforward. The equilibrium states are
derived for zero inputs, ,0x,0F,0u Fd ===

.0y,0x ps ==  We obtain ./pppp sccc 202010 ===

Linearizing the mathematic model of electrohydraulic
system around the equilibrium position, we obtain the
next linearized mathematic model:
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4 SIMULATION RESULTS

4.1. The mathematical complete model of the analyzed
elctrohydraulic servovalve has the order 11 and it is
strongly nonlinear. In order to obtain some mathematical
models of reduced order, the singular perturbation
method is applied. Two reduced models of order 9
respectively 7 are obtained by using the singular
perturbation method. The coefficients values for these
models were computed using numerical values from
(Hayase et al., 2000).
The dynamic behavior of these two models was
compared with the dynamic behavior of the reduced
model of order two (Hayase et. all., 2000).
In Fig. 2a the dynamic behavior for the initial model is
presented. For an input voltage u=10V and the
disturbance force F=1500 N, the current through the
torque motor is quickly stabilized to 0.2 A. Also is
presented the pressures evolution for the left and right
cylinder chambers (Fig. 2b).
In Fig. 2c is presented a comparison for the actuator
position between the full order model and reduced order
model (11 and 2 degree respectively).

a)

b)

c)
Fig. 2. Dynamical behavior of servovalve

4.2. For the analyzed electrohydraulic system a
linearized model of 9-order is considered. The
coefficient values for this model were computed using
numerical values from (Hayase et. al 2000). Then, the
singular perturbation method was applied for this model
considering initial that the parameters 1ε  and 2ε  are

very small and a reduced model of 7-order was obtained.
In Fig. 3 the frequency characteristic for the initial model
and the reduced model are presented. It can be seen a
good behavior of the reduced order model until 103 rad/s
(3 b).
If we consider that the parameter 3ε  is also very small a

reduced model of order 6 is obtained.
In Fig. 4 the frequency characteristic for the initial model
and the reduced model are presented. It can be seen a
good behavior of the reduced order model until 103 rad/s
(4 b).

Fig. 3.
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5. CONCLUDING REMARKS

The model coefficients are expressed in term of the
system physical parameters and therefore reveal model
structural properties. Using the singular perturbation
method, the initial nonlinear model of 11-order has been
reduced to 9, respectively 7-order system. The dynamic
behavior of the reduced order models approximates quite
well the complete order model dynamic. The neglected
dynamic is not important in the real environment control.
A linearized servovalve model has been derived from the
nonlinear model for an electrohydraulic system
consisting of a linear actuator piston and a two-stage
servovalve.

Using the singular perturbation method the initial
linearized model of 9-order has been reduced to 7,
respectively 6-order systems.
The frequency characteristics show that the
approximations are good in the frequency range of the
electrohydraulical servovalve.
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