

ANNALS OF THE UNIVERSITY OF CRAIOVA

Series: Automation, Computers, Electronics and Mechatronics, Vol. 16(43), No. 1, 2019
__

ANNALS OF THE UNIVERSITY OF CRAIOVA

Series: Automation, Computers, Electronics and Mechatronics, Vol. 16(43), No. 1, 2019
__

ANNALS OF THE UNIVERSITY OF CRAIOVA

Series: AUTOMATION, COMPUTERS, ELECTRONICS AND MECHATRONICS

Vol. 15 (42), No. 1, 2018 ISSN 1841-0626

Note: The “Automation, Computers, Electronics and Mechatronics Series” emerged

from “Electrical Engineering Series” (ISSN 1223-530X) in 2004.
Honorary Editor:

Vladimir RĂSVAN – University of Craiova, Romania

Editor-in-Chief:

Liana STĂNESCU – University of Craiova, Romania

Associate Editors-in-Chief:

Marius BREZOVAN – University of Craiova, Romania

Dorian COJOCARU – University of Craiova, Romania

Dan SELIȘTEANU – University of Craiova, Romania

Editorial Board:

Costin BĂDICĂ – University of Craiova, Romania

Andrzej BARTOSZEWICZ – Institute of Automatic Control, Technical University of Lodz, Poland

Nicu BÎZDOACĂ – University of Craiova, Romania

David CAMACHO – Universidad Autonoma de Madrid, Spain

Kazimierz CHOROS – Wroclaw University of Technology, Poland

Ileana HAMBURG – Institute for Work and Technology, FH Gelsenkirchen, Germany

Mirjana IVANOVIC – University of Novi Sad, Serbia

Mircea IVĂNESCU – University of Craiova, Romania

Vladimir KHARITONOV – University of St. Petersburg, Russia

Peter KOPACEK – Institute of Handling Device and Robotics, Vienna University of Technology,
Austria

Rogelio LOZANO – CNRS – HEUDIASYC, France

Dan Bogdan MARGHITU – Auburn University, Alabama, USA

Marius MARIAN – University of Craiova, Romania

Mihai MOCANU – University of Craiova, Romania

Sabine MONDIÉ – CINVESTAV (Department of Automatic Control), Mexico

Ileana NICOLAE – University of Craiova, Romania

Silviu NICULESCU – CNRS – SUPELEC (L2S), France

Mircea NIŢULESCU – University of Craiova, Romania

Sorin OLARU – CNRS – SUPELEC (Automatic Control Department), France

Octavian PASTRAVANU – “Gheorghe Asachi” Technical University of Iasi, Romania

Emil PETRE – University of Craiova, Romania

Dan PITICĂ – Technical University of Cluj-Napoca, Romania

Dan POPESCU – University of Craiova, Romania

Elvira POPESCU – University of Craiova

Radu-Emil PRECUP – “Politehnica” University of Timisoara, Romania

Dorina PURCARU – University of Craiova, Romania

Monica ROMAN – University of Craiova

Dan STOIANOVICI – Johns Hopkins University, Baltimore, Maryland, USA

Dorin ŞENDRESCU – University of Craiova

Sihem TEBBANI – CNRS – SUPELEC (Automatic Control Department), France

Editorial Secretary: Lucian BĂRBULESCU – University of Craiova, Romania

Address for correspondence: Liana STĂNESCU

University of Craiova, Faculty of Automation, Computers and Electronics

Al.I. Cuza Street, No. 13, RO-200585, Craiova, Romania

Phone: +40-251-438198, Fax: +40-251-438198

Email: stanescu@software.ucv.ro

We exchange publications with similar institutions from country and from abroad

ANNALS OF THE UNIVERSITY OF CRAIOVA

Series: Automation, Computers, Electronics and Mechatronics, Vol. 16(43), No. 1, 2019
__

CONTENTS

Stefania Carmen DOBRE: Using Chatbots in E-learning – An Overview of the

Literature

5

Madalin Mamuleanu: Rust, A Memory – Save Alternative to C

11

Mihai Bebe SIMION : The Transfer of an Artificial neural Network from a Device

to an Embedded Device

17

Catalin Andrei GHEORGHE, Oana Mihaela CIUCA: Instrumentation and

Processing Application in Automotive using MATLAB Simulink

25

Oana Mihaela CIUCA, Catalin Andrei GHEORGHE: Operating System for Real

Time Applications in Automotive

29

Author Index 37

ANNALS OF THE UNIVERSITY OF CRAIOVA

Series: Automation, Computers, Electronics and Mechatronics, Vol. 16(43), No. 1, 2019
__

ANNALS OF THE UNIVERSITY OF CRAIOVA

Series: Automation, Computers, Electronics and Mechatronics, Vol. 16 (43), No. 1, 2019
__

Chatbots in E-learning: An Overview of the Literature

Stefania-Carmen Dobre
Computers and Information Technology Department, University of Craiova, Romania

cdobre@software.ucv.ro

Abstract :

A lot of the technology that we are using today involves Artificial Intelligence: there are also AI

chatbots for human-computer interactions that can offer learning support, help students and

improve learning. Chatbots have potential all along the learning journey, in many of the learning

activities. They can be considered as a virtual ‘teacher’ used for reducing the workload of teachers,

the trainers from the traditional learning. This paper describes a proposal for an educational

chatbot and presents an overview about the AI features used for educational chatbots, an

architecture model and a literature review about the chatbots used for improving the learning

process.

Keywords: educational chatbot, artificial intelligence, learning

1. INTRODUCTION

A bot is a software that is designed to interact with

humans using language-based interfaces to perform some

automatic tasks. Chatbots are becoming more and more

common nowadays, from personal chatbots, personal

assistants (can assist in conducting business, meetings

reminder, managing to-do lists), healthcare and business

industries to educational chatbots (e.g. Botsify [Khan, A.

(2019)]). Due to its flexibility, a chatbot can be

considered as a trending system, that has been widely

used in various fields. There are several companies that

embedded chatbot technology into their system

environment: Facebook (has implemented Facebook

Messenger with the support of chatbot system), Microsoft

(Cortana), Samsung (Bixby), Apple (Siri) and Google

(Google Assistance).

In e-learning, chatbots offer a personalized experience for

students, provide support to acquire knowledge being

available 24/24 hours and enable the students to get

everything instantly. They are very helpful for students’

learning activities. Chatbots are an innovative approach to

automate user personalization messages (Akma et al.

(2018)). The purpose of this paper is to present an

overview of the literature about the chatbots used in

education, how AI can improve the learning process and a

proposal for a chatbot for education, a smart student

assistant. Our proposal for an AI chatbot comes to

improve student interaction and collaboration and to act

as a virtual teacher assistant in the innovative ed-tech

world.

The rest of the paper is structured as follows: section 2

presents an overview of AI features used for educational

chatbots, section 3 describes the general features of the

chatbot system, an architecture model, few of the methods

applied for chatbots development, section 4 includes

some examples of chatbots used in education, section 5

contains few details about the proposed chatbot and

section 6 highlights some conclusions.

2. AI AND CHATBOTS IN EDUCATION

Chatbots are often called artificially intelligent

conversational tools. They are acting as a game changer

in the innovative ed-tech world and are built to improve

student interaction and collaboration (Singh (2018)).

In the education field, AI is present right across the

learning journey (Clark (2018)) to support the students to

achieve their learning goals. Chatbots can play a useful

role for educational purposes, because they are an

interactive mechanism for learning, compared to

traditional learning systems as Kowalski et al. (2011)

considered.

AI Chatbots can simulate a real human conversation, with

real-time responses in natural language based on

reinforced learning. They either use voice, text messages

or both. There are already artificially intelligent

conversational tools able to find things, create and curate

content, allow natural language input and output, deliver

personalized answers to questions, to enable online

assessment and to have adaptive learning features for

students’ needs.

A chatbot is a useful tool used in education because it can

have a lot of features to help teachers to deliver the

learning content in a pleasant way or to provide

information about the students to adapt the teaching

mailto:cdobre@software.ucv.ro

ANNALS OF THE UNIVERSITY OF CRAIOVA

Series: Automation, Computers, Electronics and Mechatronics, Vol. 16 (43), No. 1, 2019
__

activity (for example a chatbot to answer questions will

help the teacher to see what questions students ask, where

students have problems, it can identify the student’s

weaknesses or the learning path). For students, the

interaction with chatbots will bring them a lot of benefits:

can offer them needed information, receive instantly

answers to their questions, support them with

learning/administrative topics and last, but not least, to

offer a personalized learning experience.

In the last years, chatbots have started to be used in

education due to the benefits they bring to both students

and teachers. In what follows, there will be presented

some of the ways that chatbots and artificial intelligence

are influencing the education (Singh (2018), McElvaney

(2018), Spilka (2017)).

From these ways can be mentioned:

Learning Through Chatbot: Artificial intelligence

technology used for building chatbots can be used to

teach the students a lecture by turning it in a series of

messages to make it easier to be read and to look like a

standardized chat conversation. The bot will present the

next part of the lecture when the student will understand

the concept. Unlike the traditional learning method,

where a teacher cannot track the level of understanding of

the lesson for each of the students present in the

classroom, the chatbot can offer this. It will lead to a

higher percentage of assimilation of the information

presented and implicitly, to achieve the student's learning

goals.

Enhanced Student Engagement: The instant messaging

platforms and social media tools are used daily by

nowadays students. So, the best ways to communicate

with peers or to find information about school topics are

these platforms or a virtual assistant that can easily

provide to the students the needed information about the

assignments, due dates or any other events. Thus, it can

lead to increase the engagement of students in a subject

and can enhance the learning process.
Use Bots as Trainers: Students need continuous support

for learning, which makes necessary a resource that can

answer any question as quickly as possible.

AI chatbots, are the best option, in this case, because,

chatbots can be trained and they will continually learn

from students’ questions to enrich their knowledge

database and to have answers to more and more

questions.

Artificial intelligence chatbot can reinforce by learning

while doing.

Efficient Teaching Assistant: In a modern learning

environment, the repetitive tasks of the teachers can be

replaced with a virtual teaching assistant. It should be

able to answer the students’ questions about the courses,

lesson plans, assignments and deadlines. Chatbots deliver

instant access to expert knowledge and advice all the

time. Also, the bot needs to be knowledgeable enough to

provide feedback to students and to analyse the students

learning path and to recommend the learning content to

them accordingly.

Instant Help to Students: Technology has enabled the

students to get everything instantly. Sometimes, a lot of

students need the same information, which can be a very

time-consuming task for teachers. Chatbots can be used to

convert this time-consuming task of replying to each

query personally into an automatic one. This will save a

great deal of time of the students and they do not need to

wait to receive the information, they will instantly receive

the chatbot response.

Concentrate on the Learner: To facilitate learning and to

increase student engagement, take ownership of their

activities, it is useful to use a chatbot. Students will access

the information and the learning content via a chatbot and

will decide which topic to cover in a learning session.

They will perceive this activity as having a personal

teacher, who will provide support for the desired

lesson/subject.

Smart Feedbacks: In education, feedback is playing an

important role: on one hand, students’ feedback offers

information about their gaps and thus, the teachers can

improve their teaching activity; on the other hand, the

teachers’ feedback allows the students to identify the

areas where they need to do some extra work. A smart

option to provide feedback, is to use a chatbot, where

students can ask several questions, and the feedback will

be automatically sent to the teacher, to be analysed and to

change/improve their activities accordingly.

Better Student Support: Chatbots can offer a huge value

to the educational institution if they are used to keep

students informed about faculty facilities, if students have

access to all the necessary information about the courses

or the modules. Chatbots can also act as campus guides

and help the students as they arrive at the campus.

This can increase institutions trust, because it seems that

they really care about the students and facilitate their

access to the information.

These bots can collect a lot of data about students’

perception about school/faculty services and thus the

services can be improved.

Personalized Learning: One of the main benefits of e-

learning is that the course can be structured to cater for

learners with different needs and abilities. Sometimes,

some students need to learn deep some modules, but

others have other gaps and need an adaptive learning

environment. A chatbot can build a comprehensive

picture of the learner as well as devising a highly

personalized learning pathway. Thus, they will continue

to monitor the progress of the learner and can provide the

course information only when it is needed.

ANNALS OF THE UNIVERSITY OF CRAIOVA

Series: Automation, Computers, Electronics and Mechatronics, Vol. 16 (43), No. 1, 2019
__

3. CHATBOT FEATURES

3.1 Chatbot architecture

A chatbot is created to perform some tasks. Regardless of

the responsibilities that the chatbot must have, the

architecture should contain the following components

marked in the figure 1 as component blocks. The chatbot

will always communicate with a user and will perform the

activities requested by him/her.

The overall conceptual architecture of chatbots is shown

in Figure 1.

Fig.1 Chatbot architecture (De Scheerder (2018))

In fig.1, there can be identified the following functional

components:

User interface (UI): The chatbot should have a responsive

UI, good looking and attractive. It is the only visible

component for the end-user, the way that the user

interacts with chatbot functionalities.

User understanding: This block is responsible for few

tasks: it tries to identify the intents (what the user is trying

to do), to extract entities (the subjects that the user is

talking about; these provide more information about the

intents), it uses the conversation context to track what has

been said. The bot should be able to learn from these

actions. It is trained to match intents and entities and to

acquire knowledge to become even better over time.

Data retrieval: If the bot understands what users want, it

must find and retrieve the correct data in the storage

resources. The resources can be retrieved using web-

services or database calls or can be reached out from

cloud.

Response generation: The chatbot must select from

several good alternatives for responses to provide them to

the user. The response(s) will be displayed to the user.

Conversation and context: This component can be

programmed with conversation flows (the ‘user

understanding’ module responsible for matching intents)

matching the purpose of the bot. This way, it can track

and update context and provide a meaningful and natural

way to engage in a conversation with the user. Without

this component, the bot would revert to zero-state after

each question (De Scheerder (2018)).

3.2 Work Methods of Chatbots

3.2.1 Pattern Matches

Chatbots use pattern matching to classify the text and to

give a suitable response to the users. For these patterns

“Artificial Intelligence Markup Language” (AIML) is

used as a standard structure model (Elupula (2019)).

Example for pattern matching:

<category>

<pattern>Who old are you </pattern> <template>I am

25</template>

</category>

<category>

 <pattern>what are you called</pattern>

 <template>

 <srai>what is your name</srai>

 </template>

</category>

The chatbot will give the answer for the user question

because the pattern contains a part of the question. It will

react only to anything related with the correlate patterns.

But it can’t go past the related pattern. To go beyond the

associated pattern, there are used algorithms.

The algorithms are utilized for text classification and can

produce several pattern combinations to make a

hierarchical structure.

3.2.2 Natural Language Understanding (NLU)

NLU (Natural Language Understanding) is an artificial

intelligence technique used for matching the sentences

from the users into intents, based on the intelligence

behind the system, a supervised intent classification

model created on a range of sentences as input and

intentions as target. NLU has 3 specific concepts which

will be described below.

Entities are represented by the chatbot purpose (e.g.

student assistant chatbot, language learning chatbot).

Intents are the chatbot actions performed when the user

says something. The bot should identify the user’s

intentions, to extract the main idea from these, because it

is possible that users ask for the same thing, but with

different inputs.

Context is a way for mapping user questions to intents,

without being necessary to store conversation/questions

history, each of the question will have assigned a flag

(e.g. if a question is: “What’s time in Romania”, the flag

can be ‘Romanian time’).

3.2.3. Natural Language Processing (NLP)

Natural Language Processing Chatbots are smart enough

to find a way to convert the user’s speech or text into

structured data for choosing a relevant answer.

NLP can translate human language into information that

contains text as well as patterns that can be useful in

discovering applicable responses. Usually, the NLP

chatbots are connected to a database, which is used to

ANNALS OF THE UNIVERSITY OF CRAIOVA

Series: Automation, Computers, Electronics and Mechatronics, Vol. 16 (43), No. 1, 2019
__

sustain the chatbot for providing the appropriate

responses to every user.

3.3 Elements of a chatbot

Chatbots must have the following essential components to

be a conversation partner (Nieves, 2018):

• Conversational artificial intelligence, the basic

source of chatbots, thanks to which all management and

natural language processing (NLP) occur. The first

chatbots focused on the interpretation and recognition of

patterns and rules. The more advanced chatbots

implement deep learning processes to analyze the human

input, learn from conversations and generate as suitable a

response as possible.

• User experience (UX), which allows a natural,

intelligent and coherent conversation to be established.

• User interface (UI), whereby the user can see or

hear the conversations with the chatbot.

• Conversational design, which allows an artificial

interaction to be equipped with human logic.

4. CHATBOTS FOR IMPROVING THE LEARNING

PROCESS

Depending on their nature, there can be distinguished two

types of chatbots in education: with and without an

educational intentionality (Garcia Brustenga et al.

(2018)). Chatbots without educational intentionality are

responsible for teaching tasks of an administrative nature

(student guidance and personal assistance) and of a

support nature (to answer FAQs). From the other

category, are mentioned chatbots that are designed to

foster teaching and learning directly: tutors, that provide

support for the learning process (can adapt, select and

sequence contents according to the student’s needs and

provide learning motivation), and exercises or practice

programs for skills acquisition (chatbot gives immediate

feedback to the student when the student answers

questions).

Lately, the need for the use of chatbots in education

implies their development according to the new

technologies that respond better to the needs of students

and teachers. In the following, some examples of chatbots

used for educational purposes will be presented.

Otto chatbot was developed by Learning Pool company

(Clark (2018)). It aims to enhance the student-content

interaction and it is integrated in an LMS.

Ani (Garcia Brustenga et al. (2018)) is an educational

chatbot that was designed for learning and to replace

some tasks of teachers. The goal was to provide

personalized tutoring and mentoring that students become

more involved in the learning activity. It includes the

ability to adapt to the user’s needs using automatic

learning algorithms, as well as elements of assessment,

motivation and immediate feedback.

Duolingo (Sawers (2019)) is designed for language

learning (many of the world’s most common languages)

using conversation through gamification techniques.

Botter (Garcia Brustenga et al. (2018)) is a physical robot

able to provide student support, it works as cognitive

technology for learning, for the promotion of student

behavioural change. It can interact with students through

few ways: using light signals, movements, sound

messages for motivation and disappointment or to help

students to monitor their learning progress.

Differ (McNeal (2016)) is a chat application for higher

education. The aim is to create a space for students where

they can ask everything. Differ can have communities that

bring together students in similar situations, it publishes

relevant messages, reminders for increasing commitment

and involvement.

CourseQ (Garcia Brustenga et al. (2018)) was designed at

Cornell University (USA), to help the students, college

groups and teachers by providing them an easy platform

to communicate. The chatbot’s functions include

obtaining information for faculty and students as well as

giving reminders regarding submission dates, timetables,

material and events.

Botsify (Khan, A. (2019) is an education chatbot that

presents a specific topic to the students and after learning

the topic, students take quizzes and submit the results to

their teachers. It is used, mainly, to help teachers to easily

monitor the students’ performances.

Ivy (Garcia Brustenga et al. (2018)) is an artificially

intelligent self-service chatbot, designed for colleges and

universities. It enables financial services, career services,

management of admissions, technological services such

as email access, Wi-Fi connection and app installation.

Di Blas et al. (2019 a, b) propose iMOOC and iCHAT,

two chatbots created as an innovative approach to

adaptive learning and for the using of the conversational

interfaces in education. They implemented adaptive

learning via conversational empathic interfaces, to help

the learner deal with complex materials.

Unsupervised machine learning techniques were used by

Ndukwe et al. (2019) for the task of automated grading

chatbot, able to ask students questions and require written

responses. In contrast with this approach, a different

communication from the questionnaire procedure,

Vladova et al. (2019) proposed a solution, a chatbot that

acts as a teacher with natural language capabilities and

used an informal way of obtaining the information about

students through the chat addresses.

5. TOWARDS AN INTELLIGENT CHATBOT FOR

EDUCATION

Due to continuous improvements in technology, the

educational field should also be up-to-date with current

trends. That is why chatbots (educational virtual

assistants) are used more and more to perform automatic

tasks for teachers and to support the learners to acquire

knowledge.

ANNALS OF THE UNIVERSITY OF CRAIOVA

Series: Automation, Computers, Electronics and Mechatronics, Vol. 16 (43), No. 1, 2019
__

Chatbots are considered a “way to improve the learning

process, by helping the learner to deal with a complex

material, tailoring the learning experience to specific

needs” (Di Blas et al. (2019 a)).

An educational chatbot should be powerful enough to

provide immediate and customized instruction or

feedback to the learner, a unique, highly focus learning

path and individual learning program for each student

based on data gathered throughout the training process.

A combination of different AI techniques such as Natural

Language Processing, Machine Learning and Semantics

Understanding can drive the desired results for the needed

requirements. From the above, we can consider that an AI

chatbot for educational environment is an intelligent

tutoring system for students, that has adaptive and

personalization capabilities. There are already many

chatbots used in education with AI features (Di Blas et al.

(2019 a, b), Vladova et al. (2019), Ndukwe et al. (2019))

created to assist the students.

In the following, will be presented an intelligent chatbot

for education, some features and problems that will be

solved by our system proposal.

Our AI chatbot proposal will include features from two

main areas: Intelligent Tutoring Systems (ITSs), the way

in which AI techniques will be applied to education and

adaptive and personalized learning, the way in which AI

techniques will identify what the learners’ needs and how

will be improved the learning experience.

The chatbot will be a “virtual teacher”, to support one-to-

one tutoring, with natural language understanding and

natural language processing capabilities. The advantage

of this chatbot is that the communication/responses in real

time will be through text or voice as it is in the traditional

classroom or in case of face-to-face training.

By using AI techniques, the system will be able to

interpret complex language and to extract the intents from

the questions, will reply with natural responses and due to

that, the learner needs to have a learning progress, the bot

must remember the context of the entire conversation.

From the informal conversation with the students and

from answers, the bot will know the starting point for

learning a topic and will identify the cognitive students’

skills for organizing the course information that will be

provided to the learner. An important role in the learning

process is represented by the assessments and the

feedback related with the acquired knowledge. To

complement the grading system mentioned in Ndukwe et

al. (2019)), where short answer text provided by a student

are matched with at least one correct answer, machine

learning techniques for text processing will be used when

the students answer will be a paragraph or a document.

For collecting data used for personalization, all

students‘answers will be stored to get an overview about

the learning style, how the learning content should be

provided (text, video) and how the student can manage

routine tasks easily (e.g. reading the course information

and taking a quiz to check for knowledge).

6. CONCLUSIONS

In this paper, we have presented a literature review about

the chatbots used in education, an overview of AI features

used for educational chatbots, general features for

chatbots and few details about a chatbot proposal.

The next step is to design and implement this chatbot and

to conduct an experimental evaluation about the chatbot

usage for learning.

REFERENCES

Akma, N., Hafiz, M., Zainal, A., Fairuz, M. and Adnan,

Z. (2018). Review of Chatbots Design Techniques.

International Journal of Computer Applications, 181,

7-10.

Anteunis, J. (2017). How to Build A Powerful Enterprise

Chatbot? Retrieved from:

https://cai.tools.sap/blog/enterprise-chatbot-

methodology/. (last accessed on 1 august 2019)

Clark, D. (2018). The Fallacy of “Robot” Teachers.

Donald Clark Plan B. Retrieved from:

https://donaldclarkplanb.blogspot.com/search?q=10+u

ses+for+Chatbots+in+learning+(with+examples).

De Scheerder, M. (2018). Building a chatbot: a reference

architecture. (2018). Retrieved from:

https://www.loqutus.com/building-a-chatbot-a-

reference-architecture/

Di Blas, N., Lodi, L., Paolini, P., Pernici, B., Raspa, N.,

Rooein, D. and Renzi, F. (2019 a). Sustainable

Chatbots supporting Learning. Proceedings of

EdMedia + Innovate Learning, 1376-1381

Di Blas, N., Lodi, L., Paolini, P., Pernici, B., Renzi, F.

and Rooein, D. (2019 b). Data Driven Chatbots: A

New Approach to Conversational Applications.

Retrieved from http://ceur-ws.org/Vol-2400/paper-

24.pdf

Elupula, V. (2019). How do chatbots work? An overview

of the architecture of chatbot. Retrieved from:

https://bigdata-madesimple.com/how-do-chatbots-

work-an-overview-of-the-architecture-of-a-chatbot/.

(last accessed on 1 august 2019)

Fryer, L., Nakao, K. and Andrew, T. (2019). Chatbot

learning partners: Connecting learning experiences,

interest and competence. Computers in Human

Behavior, 93, 279-289.

Garcia Brustenga, G., Fuertes-Alpiste, M., Molas-

Castells, N. (2018). Briefing paper: chatbots in

education. Barcelona: eLearn Center. Universitat

Oberta de Catalunya. Retrieved from:

http://openaccess.uoc.edu/webapps/o2/bitstream/1060

9/80185/6/BRIEFING_PAPER_CHATBOTS_EN.pdf

Khan, A. (2019). How Education Industry Is Being

Improved by AI Chatbots? Retrieved from:

https://medium.com/botsify/how-is-education-

industry-being-improved-by-ai-chatbots-

4a1be093cdae. (last accessed on 1 august 2019)

Kowalski, S., Hoffmann, R., Jain, R., Mumtaz, M. (2011).

Using Conversational Agents to Help Teach

Information Security Risk Analysis. SOTICS 2011:

https://cai.tools.sap/blog/enterprise-chatbot-methodology/
https://cai.tools.sap/blog/enterprise-chatbot-methodology/
https://www.loqutus.com/building-a-chatbot-a-reference-architecture/
https://www.loqutus.com/building-a-chatbot-a-reference-architecture/
http://ceur-ws.org/Vol-2400/paper-24.pdf
http://ceur-ws.org/Vol-2400/paper-24.pdf
https://bigdata-madesimple.com/how-do-chatbots-work-an-overview-of-the-architecture-of-a-chatbot/
https://bigdata-madesimple.com/how-do-chatbots-work-an-overview-of-the-architecture-of-a-chatbot/
http://openaccess.uoc.edu/webapps/o2/bitstream/10609/80185/6/BRIEFING_PAPER_CHATBOTS_EN.pdf
http://openaccess.uoc.edu/webapps/o2/bitstream/10609/80185/6/BRIEFING_PAPER_CHATBOTS_EN.pdf
https://medium.com/botsify/how-is-education-industry-being-improved-by-ai-chatbots-4a1be093cdae
https://medium.com/botsify/how-is-education-industry-being-improved-by-ai-chatbots-4a1be093cdae
https://medium.com/botsify/how-is-education-industry-being-improved-by-ai-chatbots-4a1be093cdae

ANNALS OF THE UNIVERSITY OF CRAIOVA

Series: Automation, Computers, Electronics and Mechatronics, Vol. 16 (43), No. 1, 2019
__

The First International Conference on Social Eco-

Informatics, pp 91-94. Retrieved from:

https://www.thinkmind.org/download.php?articleid=s

otics_2011_4_30_30106

McElvaney, P. (2018). 10 Secrets to Transforming L&D

with A Chatbot. (2018). Retrieved from:

https://elearningindustry.com/transforming-l-d-with-a-

chatbot-10-secrets (last accessed on 1 august 2019)

McNeal, M. (2016). A Siri for Higher Ed Aims to Boost

Student Engagement.

https://www.edsurge.com/news/2016-12-07-a-siri-for-

higher-ed-aims-to-boost-student-engagement. (last

accessed on 1 august 2019)

Meyer von Wolff, R., Hobert, S., Schumann, M. (2019).

How May I Help You? - State of the Art and Open

Research Questions for Chatbots at the Digital

Workplace. Proceedings of the 52nd Hawaii

International Conference on System Sciences 2019.

Ndukwe, I.G., Daniel, B.K., Amadi, C.E. (2019). A

Machine Learning Grading System Using Chatbots.

Artificial Intelligence in Education. AIED 2019.

Lecture Notes in Computer Science, volume 11626, pp

365-368.

Roos, S. (2018). Chatbots in education: A passing trend

or a valuable pedagogical tool? Retrieved from:

https://pdfs.semanticscholar.org/533e/bc0255c36749e

1f6b8d3662464d6ee5d4f0.pdf

Sawers, P. (2019). How Duolingo is using AI to

humanize virtual language lessons. Retrieved from:

https://venturebeat.com/2019/07/05/how-duolingo-is-

using-ai-to-humanize-virtual-language-lessons/. (last

accessed on 1 august 2019)

Singh, R. (2018). AI and Chatbots in Education: What

Does the Future Hold? (2018). Retrieved form:

https://chatbotsmagazine.com/ai-and-chatbots-in-

education-what-does-the-futurehold-9772f5c13960

(last accessed on 1 august 2019)

Sjöström, J., Aghaee, N., Dahlin, M., Ågerfalk, P. (2018).

Designing Chatbots for Higher Education Practice.

International Conference on Information Systems

Education and Research, Proceedings 4

Spilka, D. (2017). 4 Ways for Using Chatbots for

eLearning. Retrieved from:

https://elearningindustry.com/chatbots-for-elearning-

4-ways-using. (last accessed on 1 august 2019)

Vladova, G., Haase, J., Rüdian, L.S., Pinkwart, N. (2019).

Educational Chatbot with Learning Avatar for

Personalization. Retrieved from:

https://aisel.aisnet.org/cgi/viewcontent.cgi?article=135

2&context=amcis2019

Winkler, R. and Söllner, M. (2018). Unleashing the

Potential of Chatbots in Education: A State-Of-The-

Art Analysis. 78th annual meeting of the academy of

management, at Chicago

https://elearningindustry.com/transforming-l-d-with-a-chatbot-10-secrets
https://elearningindustry.com/transforming-l-d-with-a-chatbot-10-secrets
https://www.edsurge.com/news/2016-12-07-a-siri-for-higher-ed-aims-to-boost-student-engagement
https://www.edsurge.com/news/2016-12-07-a-siri-for-higher-ed-aims-to-boost-student-engagement
https://venturebeat.com/2019/07/05/how-duolingo-is-using-ai-to-humanize-virtual-language-lessons/
https://venturebeat.com/2019/07/05/how-duolingo-is-using-ai-to-humanize-virtual-language-lessons/
https://chatbotsmagazine.com/ai-and-chatbots-in-education-what-does-the-futurehold-9772f5c13960
https://chatbotsmagazine.com/ai-and-chatbots-in-education-what-does-the-futurehold-9772f5c13960
https://aisel.aisnet.org/cgi/viewcontent.cgi?article=1352&context=amcis2019
https://aisel.aisnet.org/cgi/viewcontent.cgi?article=1352&context=amcis2019

ANNALS OF THE UNIVERSITY OF CRAIOVA

Series: Automation, Computers, Electronics and Mechatronics, Vol. 16 (43), No. 1, 2019
__

Rust, a Memory-safe Alternative to C

Mădălin Mămuleanu*

*Automation and Electronics Department, University of Craiova, Craiova, Romania

(e-mail: mamuleanu.madalin@gmail.com)

Abstract: Applications written in unsafe languages like C or C++ can introduce serious

security issues due to memory errors such as buffer overflows, dangling pointers or reads of

uninitialized data. In this paper, we are analyzing the most common security vulnerabilities

found in software applications written in C or C++ and whether these issues could be avoided

by using Rust, a modern programming language focused on safety.

Keywords: software security, memory safety, undefined behavior, embedded systems, C

programming, Rust

1. INTRODUCTION

One of the oldest problems in computer security is

memory corruption. Software written in C or C++ is

prone to these type of issues. The lack of memory safety

in these languages offers hackers the possibility to exploit

memory bugs and alter the software's behavior. These

bugs can be very hard to reproduce, debug and potentially

expensive to correct. This war in memory safety is fought

on two sides. One side is trying to find new ways to

exploit software bugs in order to change the application's

behaviour. And, on the other side, researchers and

programmers are working to develop new protections and

to write a safer code.

According to the Common Weakness Enumeration

(CWE™) Top 25 Most Dangerous Software Errors, the

most dangerous issue found in software is related to

memory safety. C programming language facilitates

writing high performance code through lightweight

abstractions close to the hardware. However, low-level

control undermines security. Support for manual memory

management and unchecked memory access introduces

opportunities for human errors. In some cases, these

errors may escalate to catastrophic failures. The C

programming language was created to provide proximity

to the underlying hardware in order to write low-level

code. C has control over the memory layout and minimal

runtime support. However, some features of C, like

pointers, pointer arithmetic, pointers to middle of objects,

unchecked array indexing can cause simple programming

error to corrupt the values of arbitrary memory locations.

Memory corruption can cause a program to crash either

immediately or in a non-deterministic manner, producing

wrong results. This can be the root cause of multitude of

security bugs. This article is structured as following:

In section 2 the common security bugs related to memory

safety are analyzed.

Section 3 describes Rust's approach to memory safety and

the code from section 2 is analyzed and section 3 presents

conclusions from the presented work.

1. Spatial safety violations

Memory safety violation can be either a spatial safety

violation or a temporal safety violation. A spatial safety

violation occurs when the code accesses a memory

location outside the bounds of the object associated with

the pointer or the array. Any pointer that points outside of

it’s associated object may not be dereferenced.

Dereferencing these pointers results in a spatial memory

safety error and undefined behavior.

 Example of spatial safety violation:

//...

char *p = malloc(24);

for(int i=0; i<27;i++)

{

 p[i] = i+0x41;

}

//…

 2. Temporal safety violations

A temporal safety violation occurs when a pointer is used

to access a memory location after the object has been

deallocated. When an object is freed, the underlying

memory is not longer associated to the object and the

pointer is not longer valid. Dereferencing these type of

pointers will result in a temporal memory safety error and

undefined behavior.

ANNALS OF THE UNIVERSITY OF CRAIOVA

Series: Automation, Computers, Electronics and Mechatronics, Vol. 16 (43), No. 1, 2019
__

 Example of a temporal safety violation:

 //...

char *p = malloc(24);

free(p);

for(int i=0; i<27;i++)

{

 p[i] = i+0x41;

}

 //…

2. COMMON SECURITY BUGS

The serious security vulnerabilities facilitated by the lack

of memory safety in C and C++ are well known.

This is the underlying root cause of many security

vulnerabilities. The memory corruption often allows an

attacker to insert malicious code into the system and

taking control of the entire system.

2.1 Integer overflow

In the context of programming, an integer is a variable

capable of representing a number with no fractional part.

Like all variables, integers are regions of memory. When

we talk about integers, we usually represent them in

decimal because this is the numbering systems that we are

used to. Computers are not dealing with decimal. So,

internally, an integer is stored in binary. Because it's

necessary to store also negative numbers, there is a

mechanism to represent them using binary. This is

accomplished by using the most significant bit (MSB) to

determine the sign. Because an integer is a fixed size,

there is a maximum value it can store. When a value

greater than the maximum value is written to this type of

data, and integer overflow occurs. This overflow causes

undefined behavior. An integer overflow cannot be

detected after it happened, so there is no way for an

application to tell if a result calculated previously is in

fact reliable. This can become very dangerously if the

calculated value has to do with the size of a buffer or an

index of a buffer.

 Example of a integer overflow bug in libssh2 library:

 if(session->userauth_kybd_num_prompts) {
 session->userauth_kybd_prompts =

=LIBSSH2_CALLOC(session,sizeof(LIBSSH2_USER

AUTH_KBDINT_PROMPT) * session-

>userauth_kybd_num_prompts);

// This may overflow

}

The bug fix provided by the libssh2 team:

 if(session->userauth_kybd_num_prompts >
100)

{

 _libssh2_error(session,

LIBSSH2_ERROR_OUT_OF_BOUNDARY,"Too many

replies for keyboard-interactive prompts");

 goto cleanup;

}

if(session->userauth_kybd_num_prompts)

{

 session->userauth_kybd_prompts =

LIBSSH2_CALLOC(session,

sizeof(LIBSSH2_USERAUTH_KBDINT_PROMPT) *

session->userauth_kybd_num_prompts); //

This will not overflow

 /* ... */

}

2.2 Dangling pointers

 In computer programming, dangling pointers are pointers

that are pointing to a memory address that has been

deleted (or freed). Dangling pointers often arise during

object destruction, when a reference of an object has been

deleted or deallocated without modifying the value of the

pointer, so that the pointer still points to the deallocated

address. In some situations, the system may have

reallocated the previously freed memory and

unpredictable behavior may result because the memory

contains completely different data.

 Example of a program that creates a dangling pointer:

#include<stdio.h>

#include<stdlib.h>

int main()

{

 char **strPtr;

 char *str = strdup("Hello!");

 strPtr = &str;

 free(str);

 //strPtr now becomes a dangling pointer

 printf("%s", *strPtr);

 return 0;

}

2.3 Doubly freeing memory

Double free errors occur when free() is called more than

once with the same memory address as an argument.

Calling free() twice with the same memory address as an

argument can lead to undefined behavior and could allow

a malicious user to write values in arbitrary memory

spaces.

ANNALS OF THE UNIVERSITY OF CRAIOVA

Series: Automation, Computers, Electronics and Mechatronics, Vol. 16 (43), No. 1, 2019
__

Example of doubly freeing memory:

char* ptr = (char*)malloc (SIZE);

...

if (abrt) {

free(ptr);

}

...

free(ptr); // Double free!

2.4 Uninitialized Memory Access

 This type of memory error will occur when an

uninitialized variable is read in an application.

 Example of uninitialized memory access:

char *p = (char*) malloc(256);

char c = p[0]; // p was not initialized

void func()

{

 int a;

 int b = a * 7; // uninitialized read of

variable a

}

2.5 User-supplied format strings

When a user-supplied value is used as a format string in

printf(), scanf() or a related function. Because of this, the

attacked could execute code, read the stack and cause a

segmentation fault in the running application,

compromising the security or the stability of the system.

Because printf has a variable number of arguments, it

must use the format string to determine the number of

arguments. In the code presented below, the attacker can

pass the string "%p %p %p %p %p %p %p %p %p %p

%p %p %p %p %p" and trick the printf function into

thinking that it has 15 arguments. It will print the next 15

addresses on the stack.

Example of format string attack:

#include<stdio.h>

int main(int argc, char** argv)

{

 char buffer[100];

 strncpy(buffer, argv[1], 100);

 // Passing command line argument to

printf

 printf(buffer);

 return 0;

}

2.6. Race Condition

A race condition occurs when two or more threads access

memory without synchronization and at least one of the is

trying to write it. The first thread reads the variable and

the second thread reads the same value of the variable.

After that, both threads perform their operations on the

value, and they race to see which thread can write last to

the shared variable.

Example of a race condition bug:

#include <functional>

#include <iostream>

#include <thread>

struct Account{

 int balance{100};

};

void transferMoney(int amount, Account&

from, Account& to)

 {

 using namespace std::chrono_literals;

 if (from.balance >= amount){

from.balance -= amount;

std::this_thread::sleep_for(1ns);

to.balance += amount;

 }

}

int main(){

 Account account1;

 Account account2;

 std::thread thr1(transferMoney, 50,

std::ref(account1),std::ref(account2));

 std::thread thr2(transferMoney, 130,

std::ref(account2), std::ref(account1));

thr1.join();

thr2.join();

std::cout << "account1.balance: " <<

account1.balance << std::endl;

std::cout << "account2.balance: " <<

account2.balance << std::endl;

std::cout << std::endl;

}

ANNALS OF THE UNIVERSITY OF CRAIOVA

Series: Automation, Computers, Electronics and Mechatronics, Vol. 16 (43), No. 1, 2019
__

3. THE RUST APPROACH TO SAFETY

 Rust is a multi-paradigm system programming language

focused on safety, especially safe concurrency. Rust is

syntactically similar to C++, but is designed to provide

better memory safety while maintaining high

performance. [wiki] Rust was developed by Mozilla and it

combines the speed and control of a lower level language

with the tools, safety, and debugging provided from a

high-level language.

3.1 Hello World in Rust

 The simple program from below, similar to C, defines a

main function that is the designated entry point for the

program. The function is defined with the fn keyword

followed by an optional set o parameters. This function

consists of a call to the println! macro, which sends

formatted text to the console.

fn main()

{

 println!("Hello World.");

}

3.2 Embedded Rust

Embedded Rust is focused on safety and can replace code

written in C. Like C language, Rust can be compiled for

many targets including bare metal embedded systems. At

this moment, the targets available for Embedded Rust are:

● Bare Cortex-M0, M0+, M1

● Bare Cortex-M4, M7

● Bare Cortex-M4F, M7F, FPU, hardfloat

● Bare Cortex-M3

● x86, x86-64

● ARM

● MIPS, MIPSEL

● RISC-V

 3.4 Safety check for cleaner code

Unlike C, the Rust compiler enforces memory safety

guarantees and issues like dangling pointers or using an

object after it has been freed cannot occur in safe mode.

But, in embedded software development it's important to

manipulate addresses that could represent hardware

registers or memory addresses. For this, Rust includes an

unsafe keyword allows the programmer to do potentially

memory-unsafe operations. In this section we’ll show the

Rust equivalent of the examples in section 2 and show

what happens if we try to compile and run them.

 Dereferencing a raw pointer using unsafe keyword:

fn main() {

 let a = 1;

 let rawp = &a as *const i32;

 unsafe {

println!("rawp is {}", *rawp); }

}

● Spatial safety violation:

fn main() {

 let mut vec = vec![0; 24];

 for i in 0..27 {

 vec[i] = i + 0x41;

 }

}

Result: Runtime error

 thread 'main' panicked at 'index out of bounds:

the len is 24 but the index is 24'

● Integer overflow:

fn main() {

 let a:u32 = 5436445;

 let b:u32 = 5436363;

 println!("{}", a*b);

}

Result: Compilation error

thread 'main' panicked at 'attempt to multiply with

overflow'

● Dangling pointers:

fn main() {

 let r;

 {

 let vec = vec![1, 2, 3];

 r = &vec;

 }

 println!("{:?}", r);

}

 Result: Compilation error

borrowed value does not live long enough, `vec` dropped

here while still borrowed

● Race condition:

use std::thread;

use std::time::Duration;

ANNALS OF THE UNIVERSITY OF CRAIOVA

Series: Automation, Computers, Electronics and Mechatronics, Vol. 16 (43), No. 1, 2019
__

struct Account {

 balance: i32,

}

impl Account {

 fn with_balance(balance: i32) -> Self {

 Self { balance }

 }

}

fn transfer_money(amount: i32, from: &mut

Account, to: &mut Account) {

 if from.balance >= amount {

 from.balance -= amount;

thread::sleep(Duration::from_nanos(1));

 to.balance += amount;

 }

}

fn main() {

 let mut account_1 =

Account::with_balance(100);

 let mut account_2 =

Account::with_balance(100);

crossbeam_utils::thread::scope(|s|

{

 s.spawn(|_| transfer_money(50, &mut

account_1, &mut account_2));

 s.spawn(|_| transfer_money(130, &mut

account_2, &mut account_1));

 }).unwrap();

 println!("account_1.balance: {}",

account_1.balance);

 println!("account_2.balance: {}",

account_2.balance);

}

 Result: Compilation error

 cannot borrow `account_1` as mutable more than once at

a time

cannot borrow `account_2` as mutable more than once at

a time

4. CONCLUSIONS

 The problem with memory safety in C and C++

is an old and very discussed topic. Despite the fact that

the vulnerabilities introduced by the lack of memory

safety in C and C++ are well known, critical memory

bugs are found every year in software applications written

in C or C++. All the code from section 2 written in C or

C++ led to undefined behavior in these programming

languages. Running the equivalent version of these

examples in Rust led to runtime or compilation errors.

Because Rust is a programming language focused on

safety and also because it provides the tools, safety, and

debugging from a high-level language, it can be a perfect

candidate for the main programming language in an

embedded system.

REFERENCES

Laszlo Szekeres Mathias Payer Tao Wei Dawn Song

Stony Brook SoK: Eternal War in Memory

Santosh Ganapati Nagarakatte (2012) PRACTICAL

LOW-OVERHEAD ENFORCEMENT OF MEMORY

SAFETY FOR C PROGRAMS University of

Pennsylvania

https://www.autosar.org/fileadmin/user_upload/standards/

adaptive/17-03/AUTOSAR_RS_CPP14Guidelines.pdf

https://www.cvedetails.com/cve/CVE-2019-3856/

https://cwe.mitre.org/top25/archive/2019/2019_cwe_top2

5.html

https://doc.rust-lang.org/book/ch16-00-concurrency.html

https://en.wikipedia.org/wiki/Rust_(programming_langua

ge)

https://forge.rust-lang.org/release/platform-support.html

https://www.libssh2.org/

https://nebelwelt.net/teaching/17-527-SoftSec/slides/02-

memory_safety.pdf

https://nvd.nist.gov/general/visualizations/vulnerability-

visualizations/cwe-over-time

https://securingtomorrow.mcafee.com/mcafee-labs

http://willcrichton.net/notes/rust-memory-safety/

https://www.autosar.org/fileadmin/user_upload/standards/adaptive/17-03/AUTOSAR_RS_CPP14Guidelines.pdf
https://www.autosar.org/fileadmin/user_upload/standards/adaptive/17-03/AUTOSAR_RS_CPP14Guidelines.pdf
https://www.cvedetails.com/cve/CVE-2019-3856/
https://cwe.mitre.org/top25/archive/2019/2019_cwe_top25.html
https://cwe.mitre.org/top25/archive/2019/2019_cwe_top25.html
https://doc.rust-lang.org/book/ch16-00-concurrency.html
https://en.wikipedia.org/wiki/Rust_(programming_language)
https://en.wikipedia.org/wiki/Rust_(programming_language)
https://forge.rust-lang.org/release/platform-support.html
https://www.libssh2.org/
https://nebelwelt.net/teaching/17-527-SoftSec/slides/02-memory_safety.pdf
https://nebelwelt.net/teaching/17-527-SoftSec/slides/02-memory_safety.pdf
https://nvd.nist.gov/general/visualizations/vulnerability-visualizations/cwe-over-time
https://nvd.nist.gov/general/visualizations/vulnerability-visualizations/cwe-over-time
https://securingtomorrow.mcafee.com/mcafee-labs
http://willcrichton.net/notes/rust-memory-safety/

ANNALS OF THE UNIVERSITY OF CRAIOVA

Series: Automation, Computers, Electronics and Mechatronics, Vol. 16 (43), No. 1, 2019
__

ANNALS OF THE UNIVERSITY OF CRAIOVA

Series: Automation, Computers, Electronics and Mechatronics, Vol. 16 (43), No. 1, 2019
__

The Transfer of an Artificial Neural Network from a Device to an Embedded

Device

Mihai-BebeSimion

*Department of Automatic Control and Electronics, University of Craiova, Romania (e-mail:

mihai.bebe.simion@gmail.com).

Abstract: Designing a controller that can run on different systems is a challenge, due to the fact

that each system has its own characteristics: operating system, power supply, clock cycles, etc.

Due to an increase of computational power, artificial neural networks have come to aid in the field

of control systems theory. An example of simple utilization of ANNs in control design will be

proposed in this paper. More precisely, an ANN control approach is designed for a benchmark

Quanser platform and the obtained results are compared with those of a simple PI controller. For

practical reasons, the designed ANN control scheme is transferred to an embedded device - a

dedicated microcontroller. Several simulations and experimental results are presented.

Keywords:Neural Network, Machine Learning, MATLAB - Simulink, Arduino, Quanser

benchmark platform.

1. INTRODUCTION

Artificial Neural Networks are computing systems that

are inspired by biological neural networks. As with all

neural systems, these ANN learn by considering

examples. There are different ANN topologies that are

used to learn different thing.

The first artificial neural network was the perceptron. The

perceptron was developed by Frank Rosenblatt’s in 1958.

It could learn to associate between a simple input image

and a desired output, the output indicated if the object was

present in the image. Its topology is made of a single

input layer and a single output layer. The information

passes from the input layer, then it is sum up, passed

through an activation function and send to the output

layer (Hetcht-Nielsen, 1989; Hertz et al., 1991; Saerens

and Soquet, 1991; Warwick et. al., 1992).After the

computation power increased, new types of artificial

neural networks were developed: Feed Forward Neural

Network, RBF neural networks, DFF neural network,

Recurrent Neural Networks, Long / Short Term Memory,

Gated Recurrent Unit, Auto Encoders, Deep Belief

Network, Deep Convolutional Network, Generative

Adversarial Network, etc.

The Feed Forward Neural Networks originates from the

1950(Fig. 1). The topology of this ANN is as follows: one

input layer, one hidden layer and one output layer, all

layers are fully connected. The information from the input

layer passes to the hidden layer, at the hidden layer, the

information from each input neuron is multiplied by a

weight and it sums them up. The sum then next passes

through an activation function and passed to the output.

The same happens to the output layer, but instead of the

input layer, the information from the hidden layer is

used(Hetcht-Nielsen, 1989; Frean, 1990; Carelli et. al.,

1995; James, 1995, 1999).

Fig. 1. Feed Forward Neural Networks topology.

Fig. 2. Convolutional Neural Network topology.

A Convolution Neural Network (Fig. 2) is a class of deep

NN, they are also known as space invariant artificial

neural networks (SIANN). They are applied in image

recognition, medical image analysis and natural language

processing (Christopher and Bishop, 1995).

These networks apply a mathematical operation called

convolution, hence the name “convolution neural

network”. The design of a “convolution neural network”

consists of an input layer, multiple hidden layers and an

ANNALS OF THE UNIVERSITY OF CRAIOVA

Series: Automation, Computers, Electronics and Mechatronics, Vol. 16 (43), No. 1, 2019
__

output layer. The hidden layers consist of a series of

convolution layers that convolve to a dot product. The

activation function is a RELU (rectifier) layer which is

followed by other convolution layers (pooling,

normalization or fully connected). The final layer

involves backpropagation in order to more accurately

weight the end product.

A generative adversarial network is a class of machine

learning systems that generates training data with the

same statistics as the training set. It is composed of two

networks, one “generative network” that generates

candidates while the “discriminative network” evaluates

them (Juergen, 2015).The objective of “generative

network” is to increase the error rate of the

“discriminative network” (its purpose is to fool the

discriminator network by generating new data that the

discriminator network thinks it is not synthesized).

In control system theory, artificial neural networks can

have a big impact due to their nonlinearity behaviour and

the capability to replicate any control law.One example in

which an ANN is used in the control system theory is to

choose the Kp, Ki and Kd gains of a PID controller for a

known installation.

This paper covers the transfer of an ANN which was

trained on a device with specific characteristics to

embedded device. The ANN was trained in MatLab –

Simulink with data from a PI control law that controls a

Quanser benchmark platform (SRV02 motor system).

2. PI CONTROL LAW IN MATLAB – SIMULINK

The integral component, expressed by the integration time

constant Ti determines an order proportional to the

integral of the error of the system in question, a stationary

regime is possible only if this error is null. The existence

of a such a component I in a control law indicates that the

accuracy of the system in stationary regime (if such a

regime can be obtained) is infinite. In a stationary regime,

most of the time the component I determines the

increasing oscillation of the response, reducing the

stability of the system[Hassan et. al (2018)].

2.1 Hardware

The Pant is a Quanser Rotary Motion Servo Plant: SRV02

(Fig. 3). It consists of a DC motor that is placed in a solid

aluminium frame and equipped with a planetary gearbox.

The motor has its own internal gearbox that drives

external gears. The SRV02 units are equipped with a

potentiometer sensor and an encoder, in order to obtain

digital position measurement.

Table 1. Electrical and mechanical characteristics

Symbol Description Value

Vnom Motor nominal

input voltage

6.0 V

Rm Motor armature

resistance

2.6 Ω

Lm Motor armature

inductance

0.18 mH

kt Motor torque

constant

7.68E-03N·m

km Back-emf

constant

7.68E-

03V/(rad/s)

ηm Motor efficiency 0.69
Jm rotor Motor shaft

moment of inertia
3.90E-

7kg·m^2

Fig. 3. SRV02 system.

Fig. 4. Universal Power Module UPM 1503.

Each SRV02 system requires a power amplification

module. The power amplification module used is the

Universal Power Module UPM 1503 (Fig. 4). The power

module consists of a regulated dual output VDC power

supply and a linear power operational amplifier. The

power section is powered through a differential power

supply with the following characteristics: Maximum

power output 45W, Maximum current output 3 A,

maximum output voltage 15 V, power bandwidth 60

KHz, small signal bandwidth 700 KHz, slew rate 9

V/μsec. All of these are connected together through a

Quanser Q4 acquisition board (Fig. 5).

The Q4 acquisition board is a powerful measurement and

control board. Many devices with digital and analog

sensors can easily connect to the Q4. This board is ideal

for control systems and measurement applications.

Characteristics:

• High speed sampling rate 350kHz;

• 4 encoder inputs;

• 4 D/A voltage outputs;

• 4 analog inputs;

ANNALS OF THE UNIVERSITY OF CRAIOVA

Series: Automation, Computers, Electronics and Mechatronics, Vol. 16 (43), No. 1, 2019
__

• Can be integrated with MATLAB/Simulink via

QunaserWinCon solution.

Fig. 5. Universal Power Module UPM 1503.

2.2 PI design in Matlab-Simulink

The Simulink diagram it is composed from the following

block: Pulse Generator, Gains, Scopes, Quanser Q4

Encoder Input, Quanser Q4 Analog Output, Summation

blocks and Scopes.

The Pulse Generator block generates an input between 0

and 50degrees at regular intervals, this input is then

passed through a Gain block that converts the input into

radians. The Quanser Q4 Encoder Input reads the

impulses given by the SRV02encoder;these impulses are

converted to radians. The error between the reference and

the encoder input is computed and passed through a PI

controller. The PI controller was implemented using the

following equation. The Kr and Ti gains are empirically

determined.

Using the QunaserWinCon solution, the Simulink

application was able to obtain the following results (Fig.

7), when a step response of 50 degrees was applied.

Fig. 6. PIcontroller in MATLAB - Simulink.

Fig. 7. The Step Response of a PI controller with an input

of 50 deg.(y axis: deg., x axis: sec.).

3. ANN TRAINING IN MATLAB

MATLAB Neural Network Toolbox provides a

framework for designing and implementing neural

networks. MATLAB Neural Network Toolbox contains

different Neural Network topologies such as: convolution

neural networks, long short-term memory (LSTM) and

generative adversarial networks (GANs).

3.1 Generating training data

Using the PI controller previously designed with an input

of -180 to 180 deg., the following outputs were generated

using the Scopes blocks implemented in the design: the

reference, the error, the encoder input and the output

provided by the PI controller. In order to reduce the

unnecessary training data provided by the scope blocks,

only the error output (Fig. 8) and the PI controller output

(Fig. 9) were kept for training.

3.2 Training the Artificial Neural Network

Using the MATLAB Neural Network Toolbox, a simple

Feed Forward Neural Network with one input neuron in

the input layer, this neuron represents the error, five

neurons in the hidden layer and one output neuron in the

output layer, this neuron represents the output of the PI

controller (Fig. 10).

ANNALS OF THE UNIVERSITY OF CRAIOVA

Series: Automation, Computers, Electronics and Mechatronics, Vol. 16 (43), No. 1, 2019
__

Fig. 8. Training data (error output)(y axis: rad., x axis:

sec.)

Fig. 9. Training data (PI controller output)(y axis: rad., x

axis: sec.)

Fig. 10. The topology of the Feed Forward Neural

Network

Fig. 11. Algorithm and Progress

Fig. 12. Performance

Fig. 13. Error Histogram

Fig. 14. The ANN in a simulated environment

ANNALS OF THE UNIVERSITY OF CRAIOVA

Series: Automation, Computers, Electronics and Mechatronics, Vol. 16 (43), No. 1, 2019
__

Fig. 15. The step response of an ANN and PI in a

simulated environment

The data for training the network was divided randomly,

the training was performed with Levenberg - Marquardt

algorithm (Fig. 11).

3.3 Testing the ANN on a simulated environment

After the neural network had been trained, in order to

prove that acts like a PI controller (Fig. 12, Fig. 13), a

simulated environment was created in Simulink. The PI

controller and the ANN receives the same reference, but

only the ANN can control the DC motor. The DC motor

has the same electrical and mechanical characteristics as

the as the physical plant (Fig. 14). A step function with an

amplitude of 90 degrees (0.785 rad.) was applied to the

ANN input. The ANN has the same result as the PI

controller (Fig. 15).

4. IMPLEMENTING THE ANN ON AN ARDUINO

BOARD

The next step after the implementation of an ANN in

MATLAB – Simulink is to downgrade the hardware that

the ANN resides and implement a PI controller.

4.1 Arduino Hardware

For this step an Arduino MEGA 2560 R3 (ATmega2560

+ ATmega16u2)(Fig.16)was chosen with the following

characteristics:

• Operating voltage: 5V;

• Power supply Jack: 7V - 12V;

Fig. 16. Arduino MEGA 2560 R3

Fig. 17. L298N Dual Motor Driver

• I / O pins: 54;

• PWM pins: 15 (from I / O);

• Analog pins: 16;

• 4 x UART;

• Flash memory: 256KB, of which 8KB are

occupied by the bootloader;

• Operating frequency: 16MHz.

The connection between the Arduino board and the DC

motor is made through a L298N Dual Motor Driver

(Fig.17) with the following characteristics:

• Motor voltage: 5V - 35V;

• Logic circuit voltage: 5V;

• Motor current: 2A (MAX);

• Logic current: 36mA;

• Maximum PWM frequency: 40kHz.

4.2 Software implementation of an ANN

The software is made from several functions:

• An SPI communication function;

• A bridge control function;

• A encoder function;

• An activation function (tansig);

• ANN function.

The ANN follows the same topology as the one from

Simulink, one neuron in the input layer, 5 neurons in the

hidden layer and one neuron in the output layer. Every

neuron in the hidden and output layer has a weight and a

bias. The input layer takes the difference between the

reference and the encoder input, all of them converted

into radians. The output layer is limited between -1 and 1

due to the Activation function. The weights and the biases

were taken from the Simulink model.

ANNALS OF THE UNIVERSITY OF CRAIOVA

Series: Automation, Computers, Electronics and Mechatronics, Vol. 16 (43), No. 1, 2019
__

Fig. 18. Tan-Sigmoid Activation Function

Table 2. Hidden layer weights and biases

Weights Biases

6.9408688360690060648 -6.4818336945281203043

5.5903787863739715647 -3.8951912402557224979

-

0.7900194017891473130

-

0.00720784506970014327

7.1922321473961501326 4.7170750208624925293

-

5.5550886593272990055

-5.1628042671707987665

Table 3. Output layer weights and bias

Weights Bias

0.039011975883084318295 -

0.010528533666601457
0.0275710674929329283

-1.3611649682569975095

0.015152627955149008607

-0.05181393509394715407

The Activation function used is a Tan-Sigmoid Activation

Function (Fig.18). This function is capable of having

values between -1 and 1.

4.3 Software implementation of a PI controller

The PI controller program contains the same functions as

the ANN one, except that the ANN is replaced with a PI

controller.

The PI is computed using the following recursive

formula:

Where Uk is the current output, Uk1 is the previous

output, ek the current error and ek1 the previous error.

Using the new gains, the response of the PI controller

when a step function was applied can be observed in Fig.

19.

5. EXPERIMENTAL RESULTS

For the PI controller implemented in Arduino, in order for

the output to follow the input, the Kr and Ki needed to

have their value modified.

Table 4. PI controller gains used on the embeddeddevice

 Simulink Arduino

Kr 2 100

Ki 0.3 30

For Arduino, the Kr and Ki were also empirically

determined, which took more time than implementing the

ANN. For the ANN just knowing the weights, biases,

activation function and the topology we get the following

result (Fig.20). There is an overshoot but without prior

knowledge of the installation, computing the Kr and Ki

gains is difficult.

Fig. 19. The step response of and PI controller on an

Arduino board (y axis: deg., x axis: sec.)

Fig. 20. The step response of an ANN on an Arduino

board (y axis: deg., x axis: sec.)

ANNALS OF THE UNIVERSITY OF CRAIOVA

Series: Automation, Computers, Electronics and Mechatronics, Vol. 16 (43), No. 1, 2019
__

6. CONCLUSIONS

The results proves that the PI control law can be

replicated on an ANN. The ANN can be easily transferred

to an embedded device with lower computation power

and can give almost the same results without any

modifications to the ANN. The Kr and Ki gains need to

be modified in order to work on the Arduino board.

REFERENCES

A. K. Hassan, M. S. Saraya, M. S. Elksasy, and F. F.

Areed, “Brushless DC motor speed control using PID

controller, fuzzy controller, and neuro fuzzy

controller”, International Journal of Computer

Applications, vol. 180, no. 30, pp. 47–52, 2018

Christopher M. Bishop, Oxford press, 1995, Neural

Networks for Pattern Recognition, He also has a

more recent book called Pattern Recognition and

Machine Learning (Springer, 2006)

James A Anderson, An Introduction To Neural Networks,

MIT Press, 1995.Neural Smithing: Supervised

Learning in Feedforward Artificial Neural Networks

(Reed, Marks, MIT Press, 1999)

J. Hertz, A. Krogh, R. Palmer, Introduction to the theory

of Neural Computation, Addison Wesley, 1991

Juergen Schmidhuber(2015) (Cited: 2,196), Deep

learning in neural networks

K. Warwick, G. W. Irwin, K. J. Hunt, Neural Networks

for Control and Systems, U.K., Stevenage:

Peregrinus, 1992.

M. Frean, The Upstart algorithm: a method for

constructing and training feed-forward networks,

Neural Computation, vol. 2, pp. 198-209, 1990.

M. Saerens, A. Soquet, Neural-controller based on back-

propagation algorithm, Proc. Inst. Elect. Eng., vol.

138, pp. 55-62, 1991.

R. Carelli, E. F. Camacho, D. Patiño (Patino), A neural

network based feedforward adaptive controller for

robots, IEEE Trans. Syst. Man Cybern., vol. 25, pp.

1281-1288, Sept./Oct. 1995.

R. Hetcht-Nielsen, Theory of the backpropagation neural

networks, Ρroc. Inter. Joint Conf Neural Networks,

vol. I, pp. 593-611, 1989-June.

ANNALS OF THE UNIVERSITY OF CRAIOVA
Series: Automation, Computers, Electronics and Mechatronics, Vol. 16 (43), No. 1, 2019

ANNALS OF THE UNIVERSITY OF CRAIOVA
Series: Automation, Computers, Electronics and Mechatronics, Vol. 16 (43), No. 1, 2019

Instrumentation and processing application in automotive

using MATLAB Simulink

Cătălin-Andrei Gheorghe*, Oana Mihaela Ciucă**

*Automation and Electronics Department, University of Craiova

Craiova, Romania (e-mail: catalin96s@yahoo.com).

** Automation and Electronics Department, University of Craiova

Craiova, Romania (e-mail: ciucaoana96@gmail.com).

Abstract: This paper presents a method to analyze and process signals in automotive, designing an

application in MATLAB Simulink, run on Arduino based microcontroller. The model based design

allows implementing and testing more efficient, using the available blocks in Simulink libraries. The

signals received from sensors can be analyzed in real time using support packages from MathWorks

and the resulted models can be tested in model-in-loop (MIL) strategy.

Keywords: automotive, model based design, Simulink, data acquisition, model-in-loop.

1. INTRODUCTION

Every year, automotive systems become more and more

complex. They are increasing in difficulty and cost to be

designed successfully. Every customer wants to add

new options and accessories to the future car model.

Body electronics are very affected of this direction, a

good example being the electrical trunk design.

According to R. Charette (2009), the first production car

to incorporate embedded software was the 1977 General

Motors Oldsmobile Toronado which had an electronic

control unit (ECU) that managed electronic spark

timing.

During that time, the trunk was mostly opened and

closed manually. The few cars which had the electrical

trunk available had a simple way of implementing it and

it was presented to customer as on option.

Nowadays, this concept has become a trend. This

involves meeting market and legislative requirements,

which actually leads to the need of creating a control

system designed to combine the input for several

sensors and follow the complex requirements, keeping

the deviations and errors as small as possible (Z. Zhung

et al., 2019).

Traditional design methodologies in automotive

involves creating and implementing the algorithms in C.

Design is done for every module integrated in project as

a text description of algorithms.(C. Andrici et al., 2014)

In case some hardware parts are missing, the engineer

must wait for them to arrive, in order to test his

implementation and see the system behavior.

This issue which can cost both time and money, can be

avoided using an algorithm development as a model

based design in Simulink. This decouples the software

creation from hardware and also allows simulation of

any kind of signal. (S. Wakitani et al., 2017)

For example, instead of using the same hardware

ignition signal from car, in order to test the trunk

functionality, the ignition can be simulated as input,

following the exact curve and values as the real one,

using MATLAB Simulink. Another advantage is

represented by the fact that once the design has been

checked and reviewed, the code can be quickly and

efficiently generated via automatic code generation. The

current paper contains an example of analyzing and

designing the control of an electrical trunk in

automotive using Simulink and Arduino based

microcontroller.

With the latest release of Simulink Support Package for

Arduino Hardware, this application can be directly built

up in Simulink with extra blocks from other provided

libraries.

Of course, this is only an example. There are many

possibilities in which the model based design using

Simulink can be used in automotive applications, most

of them being already used by embedded programming

companies.

As the car market and customer expectations expands,

companies are successfully using the design approach,

including Caterpillar, General Motors, Toyota,

ANNALS OF THE UNIVERSITY OF CRAIOVA
Series: Automation, Computers, Electronics and Mechatronics, Vol. 16 (43), No. 1, 2019

Continental, Daimler, Jaguar and others (J. Friedman,

2006).

2. RELATED STUDIES

At Caterpillar, as in most automotive companies, the level

of system complexity was out pacing the ability of

mechanical control systems, resulting in increased demand

for control software. They recognized that it needed to

provide a mechanism to allow its controls groups that

traditionally focused on mechanical systems design a means

to develop innovative algorithms in software. As a result of

their adoption of Model-Based Design, Caterpillar was able

to reduce the man hours to develop and implement a

standard project by a factor of 2-4. Caterpillar also found

that the total project time was reduced by a factor of 2.

Simply put, with half the staff, Caterpillar was able to

complete their projects twice as quickly (J. Friedman,

2006).

E. Rapos (2014) observed that Simulink provides several

added benefits for automotive development which make it

an interesting technology to study. The versatility of the

Simulink environment provides real-time simulation

capabilities which allow for more reliable and accurate

testing early in the development process.

T. Farkas et al. (2009) observed that the increased amount

of software in automotive embedded systems has challenged

its C code development to successfully manage software

design, reuse, flexibility and efficient implementation.

Model based methods help to address such challenges with

more abstract specification, code generation and simulation

to determine if software design will meet requirements.

Therefore, migration concepts and adequate domain-

specific methods with adoption of modeling languages and

their tools in established embedded coding environments are

needed.

3. OVERVIEW

The content of this paper presents the implementation of

automatic control of a car trunk and all the necessary steps

to analyse and process the signals from the system.

The acquisition of signals will be performed using the

Atmega 328 microcontroller, and the interpretation,

processing and generation of decisions based on inputs will

be performed using MATLAB Simulink. Communication

between Simulink and Atmega 328 is done through a

platform offered by MathWorks, using serial

communication as a basis.

The analog input signals are sampled and quantified by the

analog-to-digital converter built in the microcontroller, and

the result is transmitted cyclically, via SPI communication,

to the PC unit. Therefore, evolutions of the input signals can

be followed in real time, specific models can be created and

the results of the experimental running on the

microcontroller can be evaluated with precision.

The main hardware components used for electrical trunk

control are:

• 12V DC motor control with built in hall effect encoder.

The motor is used to open and close the electrical trunk. The

Hall Effect encoder allows the system to track the motor

position, leading to a precise actuation time needed to fully

close or open the trunk.

• Current sensor ACS724 used to measure the current

consumption of DC motor. Therefore, the obstacle can be

detected by having a current consumption monitoring.

• Motor driver Pololu BD65496MUV which allows

controlling of the 12V DC motor in both directions of

rotation and also protects the hardware for overcurrent fault.

The algorithms will be simulated in real time, using

MATLAB, having as inputs both physical signals and

simulated signals. The results are plotted in the form of

graphs, thus allowing the evaluation of the behavior over

the entire execution period.

Fig. 1. Functional overview

4. ELECTRICAL TRUNK CONTROL

4.1 The acquisition and processing of the DC motor current

consumption

The main advantage of using Simulink is the possibility to

acquire in real time the signals read through the

microcontroller and its ports. Therefore, to detect an

obstacle, the application monitors the current consumed by

the motor.

According to the laws of physics, if the load of a DC motor

increases, the current consumed by it increases linearly,

giving rise to an obstacle detection algorithm.

The current sensor ACS724 provides an output voltage

corresponding to the intensity of the electric current flowing

through it. The accuracy of the sensor used in the

application is approximately 186mV/A. When the input

current is zero, the sensor measures 2.5V. Based on the

direction of current, the voltage is increased or decreased.

ANNALS OF THE UNIVERSITY OF CRAIOVA
Series: Automation, Computers, Electronics and Mechatronics, Vol. 16 (43), No. 1, 2019

In the below graphic, it can be seen the shape of the input

signal (plotted with the Scope block from Simulink) when

the motor is running normally, without any external load:

Fig. 2. Voltage generated by the current sensor in

normal operation

The analog-to-digital converter used has a resolution of 10

bits. Since the maximum voltage received from sensor is

5V, the error of the ADC is 4.88mV. To have a more

precise measurement, resolution of the ADC should be

bigger.

Firstly, the average of the samples must be calculated in a

time interval. The time interval was chosen as 3 seconds.

From Fig. 2, the average in 3 seconds is approximately 508

ADC units (it’s calculated using MATLAB user defined

function, with respect to the sample rate).

This is equivalent to 508*500/1023 = 2482mV ± 4.88mV.

Considering that accuracy of the sensor is 186mV/A,

0.18mV from the sensor output is equivalent to 1mA.

After transformation from sensor datasheet, the current

consumption of the motor is (2500 – 2482)/0.18 = 100mA ±

27mA.

Fig. 3. The voltage generated by the load change of the

DC motor in ADC units

As can be seen in Fig. 3, when the motor is blocked,

encountering an obstacle, the current consumed by it

increases, and in proportion to the current intensity also

increases the voltage generated at the sensor output. Using

the same logic as above, the current consumption of the

motor calculated in an interval of 3 seconds is 500mA ±

27mA. Fluctuations and signal instability are caused by

several factors: ADC conversion error, low motor current

consumption (approximately 0.5A when completely

blocked, powered at 12V), current conversion error of

sensor.

However, based on this acquisition, a threshold for which

the motor is considered blocked can be set. The threshold is

defined as 450mA. If the current is greater than 450mA for

a configurable time, then the motor is considered blocked or

stuck and the trunk stops actuating, until a new command is

received.

Using this system, the chance of having an accident by

hitting the trunk while closing or opening is reduced

significantly.

4.2 Acquisition and processing of the signal generated by

the encoder

Fig. 4. Voltage signal generated by the encoder in ADC

units, when the motor is supplied with 6 V

To determine the position of the motor, the application uses

the pulses generated by the encoder during the rotation of

the motor.

The signal received from encoder is represented by voltage

in range of 0 – 2.5V. When the motor is rotating in one

direction, the hall effect of the sensor generates a constant

number of impulses with both logical levels high and low.

For a complete rotation there are 32 impulses received,

according to datasheet. Is is very important to make sure

that no hall impulse is lost, otherwise the position of the

motor will not be precise and will lead to a wrong actuation

ANNALS OF THE UNIVERSITY OF CRAIOVA
Series: Automation, Computers, Electronics and Mechatronics, Vol. 16 (43), No. 1, 2019

time of the trunk. To fulfill this requirement, the input

signal must be read on event, using hardware interrupt.

Instead of using the polling concept to read the

microcontroller input pin cyclically, an external interrupt

will be set to trigger the read on the pin in case the voltage

is greater than threshold.

This method is not dependent to the sample rate of the

analog-to-digital conversion and also decreases the runtime

and RAM consumption of the microcontroller. The interrupt

is configured from Simulink using a special block from

hardware support package library (Fig. 5).

Fig. 5. External interrupt block in Simulink

4.3 Principle of operations. Simulink implementation.

Initially, the DC motor that controls the opening and closing

of the trunk is stopped.

If the trunk button has been pressed and the trunk is open, it

activates the rotation of the motor in the closing direction.

As the motor rotates, it acquires and counts the number of

pulses generated by the encoder. When the number of

generated pulses has reached the corresponding value of

open position, it stops the engine. Simultaneously, the

application monitors the current consumed by the motor.

If it exceeds the current limit for normal actuation, meaning

that an obstacle has been encountered on the route, motors

is stopped and the fault is marked by flashing an LED and

waits until a new ON ignition signal is received.

If the motor is stopped without any error and the trunk is

closed, the application will activate the rotation of the

engine in the opening direction. As the motor rotates, it

acquires and counts the pulses generated by the encoder.

When the number of generated pulses has reached the

corresponding value of closed position, it stops the motor.

Simultaneously, the application monitors the current

consumption of the motor.

Again as before case, if it exceeds the current limit for

normal actuation, meaning that an obstacle has been

detected, motor is stopped and the fault is marked by

flashing an LED until a new ON ignition signal is received.

All threshold values used in the application are parameters,

so they can be configured while in RUN mode. These are

included in simulation by executing an external MATLAB

file in the current workspace.

Fig. 6. Stateflow chart for trunk contro

ANNALS OF THE UNIVERSITY OF CRAIOVA
Series: Automation, Computers, Electronics and Mechatronics, Vol. 16 (43), No. 1, 2019

A status diagram from Simulink Chart is used to create the

trunk control algorithm. There are 4 system states required:

Stop, DirectionA, DirectionB and Obstacle_Detected.

Default state is Stop.

The system outputs in this state are motor_speed equal to 0,

motor_direction equal to ROT_A, and error (variable

representing the result of obstacle detection) equal to 0. If

the trunk button has been pressed and the motor has

previously rotated in the opening direction (DIRA) then the

system will switch to DirectionB state. In this state, rotation

will be done in closing direction.

The corresponding outputs to this state are motor_speed

equal to MAX_SPEED, motor_direction equal to ROT_B.

The future direction will also be stored as direction A (after

opening, the next time the button is pressed the trunk will

close).

The first condition evaluated to get out of the current state is

whether the number of pulses given by the encoder has

reached the threshold value at which the trunk is considered

closed. Thus the variable counter_position is incremented as

long as it is not equal to HALL_NUMBER and only if the

previous position is different from the current position. If

before equality condition has been met, then the system

status becomes Stop.

If the button has been pressed and the previous direction of

rotation of the engine has been in the direction of closing

(DIRB), a condition verified by evaluating the direction

variable, then the next state of the system will be

DirectionA.

In the A-direction state, the system outputs are motor_speed

equal to MAX_ SPEED, motor_direction equal to ROTA.

The next direction will also be stored as direction B (after

closing, the next time when button is pressed the trunk will

open).

The first condition assessed to get out of the current state is

whether the number of pulses given by the encoder has

reached the threshold value at which the trunk is considered

open. Thus the variable counter_position is incremented as

long as it is not equal to HALL_NUMBER and only if the

previous position is different from the current position. If

before defined equality condition has been met, then the

system status becomes Stop.

If the system is in one of the Direction_A or Direction_B

states, and the current consumed by the motor reaches the

limit of the obstacle detection threshold, the system

switches to Obstacle_Detected state. In this state, the system

outputs are motor_speed equal to STOP, meaning that the

motor does not rotate anymore and the error becomes

present (1). The transition from this state is reached only if

the ignition signal (ignition_state) is equal to

IGNITION_ON.

In the end, the system will return to Stop state and the

algorithm will be restarted from the beginning.

5. CONCLUSIONS

This paper demonstrates a way to implement and analyze an

existing system on the car market: the control of the electric

trunk of a car.

Using MATLAB Simulink, acquisition of input signals was

performed, the model initially defined only conceptually

was tested and validated, running the software on Atmega

328 microcontroller.

This method of programming, analyzing and processing

signals within an embedded automotive system has a

number of advantages, such as:

• Sampling and visualizing their evolution in real time,

observing the influence of perturbations on the system;

• Creating and running models previously developed

theoretically;

• Accurate reproduction of the real environment in which

the embedded system will be used in reality;

• The evaluation of the system results is performed in real

time, having the possibility of a real-time monitoring;

REFERENCES

Andrici, C., & Ipatiov, A. (2014). Automotive multi-project

architecture with model based development: An inside

look at multi project handling within steering projects.

2014 18th International Conference on System Theory,

Control and Computing.

Farkas, T., Neumann, C., & Hinnerichs, A. (2009). An

Integrative Approach for Embedded Software Design

with UML and Simulink. 2009 33rd Annual IEEE

International Computer Software and Applications

Conference.

Friedman, J. (2006). MATLAB/Simulink for Automotive

Systems Design, IEEE 2006 Design, Automation and

Test in Europe - Munich, Germany.

Rapos, E. J. (2014). Co-evolution of Model-Based Tests for

Industrial Automotive Software. 2014 IEEE International

Conference on Software Maintenance and Evolution.

Wakitani, S., & Yamamoto, T. (2017). Practice of model-

based development for automotive engineers. 2017 IEEE

Frontiers in Education Conference (FIE).

Zhung, Z.-Y., Chen, K.-C., Yu, Y.-H., & Kwok, N. (2019).

Chip-based Anti-collision System for Car Door

Opening. 2019 4th International Conference on

Intelligent Transportation Engineering (ICITE), pp. 322-

326.

MATLAB and Simulink for Automotive:

https://www.mathworks.com/

ANNALS OF THE UNIVERSITY OF CRAIOVA

Series: Automation, Computers, Electronics and Mechatronics, Vol.16 (43) No. 1, 2019

ANNALS OF THE UNIVERSITY OF CRAIOVA

Series: Automation, Computers, Electronics and Mechatronics, Vol.16 (43) No. 1, 2019

Operating system for real time applications in automotive

Oana Mihaela Ciucă*, Gheorghe Cătălin Andrei**

*Department of Automatic Control and Electronics, University of Craiova

Craiova, Romania (e-mail: ciucaoana96@gmail.com).

** Department of Automatic Control and Electronics, University of Craiova

Craiova, Romania (e-mail: catalin96s@yahoo.com).

Abstract: This paper presents the configuration of a real-time operating system in applications with

an impact on the safety and security of the user. It allows the possibility to use a processor type

STM32F4001 as a control system in the automotive area for applications that require real-time

control. Moreover, with the current advancement of today's STM32 processors, combined with a

lower cost compared to current industrial control systems, the Nucleo board can be an excellent

choice in reducing costs without compromising the quality or ability to achieve an automation of

an embedded application system.

Keywords: real-time operating system, real-time control, embedded application system,

automotive, Nucleo board, STM32

1. INTRODUCTION

Nowadays, as science evolves more and more,

multitasking and the ability to perform many tasks

quickly are very important to keep up with the fast work

environment, in addition to work efficiency increasing.

In the automotive industry, most processes require an

extremely fast execution time, so the system response

ensures the safety and integrity of the user. A single-core

processor can perform a single operation at a time.

Sequential run of tasks, regardless of the duration or

priority of each activity, could have a devastating effect.

For example, starting and controlling the wipers for a car

would mean that all other functions assisted by the

machine's process computer (such as ABS, automatic

braking system, light control, etc.) would be stopped until

they were stopped, and the processor could control a

single load, which is obviously impossible.(Walker,

Richard, C. 2009)

A possible solution would be to use more multi-core

processors to perform different tasks in parallel, but with

the development of technology, thousands of tasks should

be performed in parallel to perform all existing

functionalities on top machines, considering the safety,

user interface or comfort. This solution is proving to be

extremely expensive and difficult to implement as the

size, weight and cost of cars should increase significantly.

In addition, in recent years there has been a decrease in

the raw material needed to make microprocessors, which

further hinders this solution.

Another simpler, cheaper, and easier to implement

solution is a strict and careful organization and

monitoring of the tasks that have to be performed, a list of

priorities for each process executed so each task can be

executed without blocking the execution of the others.

State of the Art

Furth et al. (1991) observed that applications and systems

in real-time fields cover a diverse range. In the broad

sense, real-time systems include systems for flight

simulation, process control, medical laboratory

automation, switching processing, on-line transaction

processing, and even the multimedia systems.

In 1993 T. Soneoka, A. Oizumi and K. Suda observed

that in real-time multi-tasking processes, the main

requirement is to be able to process as many requests as

possible, with strict restrictions on response time. Thus,

switching systems can handle even hundreds of users. The

number of tasks for these systems reaches the order of

tens of thousands per second. In order to reduce the

average response time and rise performance for this kind

of systems, a preemptive priority method is adopted at the

failure level and at the clock level, while a non-

preemptive priority method is used for control at the base

level, where call processing itself and off -hook

supervision take place. The last method said that the

priority is given to tasks with the shortest expected

remaining processing time. T.W. Kuo and C.H. Li (1999)

presented a two-level hierarchical scheduling scheme for

an open system architecture with a fixed-priority

scheduler. They show that the schedulability of any real-

time application which adopt the stack resource policy

cand be validated independently of other application.

They developed a global resource synchronization

mechanism where tasks in different applications can share

global non-preemptable resources.

Later, J. Li, G, Zheng, H. Zhang and G. Shy proposed

different task switching strategies corresponding to the

ANNALS OF THE UNIVERSITY OF CRAIOVA

Series: Automation, Computers, Electronics and Mechatronics, Vol.16 (43) No. 1, 2019

assigned tasks in the processing nodes of a real time

processes and a task scheduling algorithm for

heterogeneous real-time system. They demonstrated that

using this algorithm we can avoid thrashing of scheduling

system, missing deadlines of suspended tasks due to long

waiting time.

Based on these topics, the article is structured as follows:

Section 1 briefly presents relevant related studies and a

short introduction. Section 2 provides a short overview of

the system architecture. Section 3 presents the design of

the multicore system using the configured operating

system. Section 4 presents the conclusions of the article.

2. OVERVIEW

This paper presents the configuration of an operating

system for the Nucleo 64 STM32F401 microcontroller

aimed at controlling the exterior lights of a car, more

precisely the adaptation of the position of the headlights

according to the turning angle, hazard lights and turn

signal lights. It is desired to monitor the signals and

schedule the execution according to priorities.

The steering wheel position is constantly monitored with

the help of a potentiometer, the output signal purchased

from it is acquired as an input of an ADC of the Nucleo

board and converted into a digital signal, then this

information is processed and transformed into a value of

the PWM duty cycle applied to the servomotor used for

headlamp control. Signal acquisition and motor control

are done on separate tasks that share a common resource

that is written or read. The hazard lights or turn signal

lights can also be activated by pressing the corresponding

buttons.

The planner developed within the project uses a system

for prioritizing tasks, periodically checking if a higher

priority task has occurred.

Each task has assigned a certain priority and a unique

state in which it can be at a given time. A system outage

checks at a predetermined time if the current task has

been executed or if a higher priority task has occurred and

needs to be started. Less priority tasks are placed in a

queue.

By running the processes one by one, suspending them,

and resuming their execution, the so-called virtualization

of the processor can be achieved.

With this project, we can demonstrate the possibility of

using an STM32F4001 processor as a control system in

the automotive area for applications that require real-time

control.

Moreover, with the current advancement of today's

STM32 processors, combined with a lower cost compared

to current industrial control systems, the Nucleo board

would be an excellent choice in reducing costs without

compromising the quality or ability to achieve an

automation of an embedded application system.

Fig 1. Nucleo 64 STM32 F401 controller board

(ro.farnell.com)

The FreeRTOS operating system was chosen because it

allows the configuration of an embedded system in the

desired parameters, presenting a user-friendly interface. It

also provides all the tools needed to set up a functional

and efficient planner that meets the requirements.

3. DESIGN OF MULTICORE FREERTOS

Separate tasks that will monitor and control both the

lights and the position of the headlights will be created.

A real-time application that uses an RTOS can be

structured as a set of independent tasks. Each task is

performed in its own context, without accidental

dependence on other tasks in the system or on the RTOS

scheduler itself. Only one task in the application can be

executed at any one time, and the real-time RTOS

scheduler is responsible for deciding which task it should

be. Therefore, the RTOS scheduler can repeatedly start

and stop each activity (change each activity in and out) as

the application runs.

For this application, four tasks are sufficient to implement

the acquisition of data on the position of the steering

wheel, for processing and sending the command to the

servomotor, for the control of emergency lights and for

the control of turn signal lights.

Fig. 2. Tasks configuration

In order not to load the system, the control of the lights

and the ON / OFF period is done by using interrupts. For

the same reason, pressing the buttons also generates an

external interrupt. These interrupts are unmaskable and

cannot be interrupted by any other interrupt.

3.1 Timer configuration

The input frequency for the internal clock is 8MHz and

for setting the timers it was desired to set a frequency of

50MHz. STM32 CubeIDE provides general purpose

ANNALS OF THE UNIVERSITY OF CRAIOVA

Series: Automation, Computers, Electronics and Mechatronics, Vol.16 (43) No. 1, 2019

timers. One general purpose timer corresponding to the

APB2 prequalifier was used to control the ON / OFF

period of the lights. The calculation formula for the

period is presented below:

where:

APB_TIM_CLK = 8MHz; PRESCALER_Value = 50000

-1; PERIOD_Value = 10000-1.

Fig. 3 Timer configuration

3.2 PWM configuration

The control of the servomotor was performed using a

PWM applied on one of the analog pins which is

connected to the data pin of the servomotor. The cannel

was configured as “PWM Generation”.

PWM mode allows the generation of a signal with a

frequency determined by the value of the TIMx_ARR

register, and an operating cycle determined by the value

of the TIMx_CCRx register. In PWM mode, TIMx_CNT

and TIMx_CCRx are always compared to determine if

TIMx_CCRx and TIMx_CNT or TIMx_CNT &

TIMx_CCRx are used (depending on the direction of the

counter).

Fig. 4 PWM frequency configuration

Receiving the clock frequency from an internal source,

the output pin that is configured in PWM mode is set to

HIGH and a counter starts until the value loaded in the

CCRx register is reached. At that time, the output pin is

set to LOW. Thus, the value of the filling factor is

actually loaded in the CRRx register.

Fig. 5 PWM Output Channels (M. Chaled, 2019)

The PWM period (1 / FPWM) is calculated based on the

ARR register value, the prescaler value and the FClk

internal clock frequency.

The duty cycle is calculated as follows:

3.3 ADC configuration

The potentiometer used to acquire the steering wheel

position data at a certain time provides an analog signal

output that must be converted to a digital signal in order

to be further processed. For this, the ADC module was

used on one of the analog pins.

The configuration of the ADC module for conversions

can be done in 3 different ways depending on the types of

applications and requirements.

Fig. 6 ADC Configuration

- Pooling mode - an ADC conversion is started, and the

processor is stopped to wait for the ADC conversion to

complete. Only after the ADC conversion is complete can

the CPU resume executing the master code.

- Interrupt mode - the ADC can be triggered to start a

conversion and the CPU continues to execute the main

code routine. When the conversion is complete, the ADC

triggers an interrupt, and the processor is notified so that

ANNALS OF THE UNIVERSITY OF CRAIOVA

Series: Automation, Computers, Electronics and Mechatronics, Vol.16 (43) No. 1, 2019

it can switch the context to the SRI handler and save the

ADC conversion results.

The risk introduced by using this method is that for many

conversions, the CPU load can increase too much.

- DMA - The DMA unit can directly transfer the ADC

result from the peripheral to the memory, all this being

done without any intervention of the processor. After

DMA transfers the data to a 1kb buffer, it can notify the

processor to process the resulting data. A DMA module is

an integrated device that performs fast data transfer

between various physical components such as between

memory and peripherals or between memories and even

between peripherals without the involvement of the

processor.

In this way the transfer can be executed in parallel with

the execution of tasks.

Fig. 7 DMA configuration

3.4 NVIC configuration (Nested Vector Interrupt

Controller)

Nested Vector Interrupt Controller offers several features

for efficient exception handling. When an interrupt is

being scaled and a new request occurs, it is checked

whether the one that interrupts it has a higher priority, and

if this is met, the new

exception can interrupt the current one. This is called

nested exception handling.

The exception handler resumes execution after the higher

priority exception is handled. To complete the

requirements, NVIC was configured as in the figure 8(a.,

b.).

Fig. 8 a) NVIC configuration

Fig. 8 b) NVIC configuration (Timers and interrupts)

3.5 Binary semaphores

The resources access was based on binary semaphores or

mutexes. They are used to resolve the mutual exclusion of

a shared resource or code sequence, to ensure that a single

process accesses its critical region at a time. Binary

semaphores are types of data that can have two values,

true or false.

Fig. 9 Interrupt used to reach the semaphore

(STMicroelectronics, 2019)

ANNALS OF THE UNIVERSITY OF CRAIOVA

Series: Automation, Computers, Electronics and Mechatronics, Vol.16 (43) No. 1, 2019

Emergency lights and turn signal lights use the same

common resource represented by a common LED.

Simultaneous ignition is not possible. For this reason, the

use of binary semaphores was chosen to block

simultaneous access to this resource. The same was used

to read and write the common variable used by ADC to

control the servomotor position. In this way a resource

can be used at a certain point in time by a single task,

avoiding overwriting the information. When one task

needs the resource, it has to check if the semaphore is not

already in use. If the semaphore is free, then the task can

lock the needed resource.

The scheduler of the real-time system can decide the

priority of the task to the shared resources.

Fig. 10 Binary semaphore

3.6 External interrupts

The start of emergency lights or turn signal lights was

achieved by pressing two buttons, by activating the

external interrupts corresponding to each button,

connected to the digital pins.

A function associated with each interrupt has been

implemented, so when the button is pressed, a flag is set

or reset.

Fig. 11 Callback function associated to the external

interrupt

4. CONCLUSIONS

The aim of the paper is to implement and configure a real-

time operating system for embedded applications,

demonstrating its usefulness for implementing systems

that require a fast response time. This goal has been

largely achieved by effectively managing three of the

most common applications used for automobiles. The

hardware support used effectively meets the requirements

and manages to meet, in a minimal way, the constraints

related to the speed of acquisition or response. The

existence of a single core makes the controller used a

perfect model of the development board that manages to

meet both the requirements related to cost and efficiency.

The paper presents many possibilities for development,

offering the possibility to add more applications or to

integrate new modules. There are also a variety of

development directions, including scheduler optimization

and support for a wide range of processors.

REFERENCES

Chaled, M., (2019). STM32 PWM Example – STM32

Timer PWM Mode & LABs:

https://deepbluembedded.com/stm32-pwm-example-

timer-pwm-mode-tutorial/

Furht, B., Grostick, D., Gluch, D., Rabbat, G., Parker, J.,

McRoberts, M. (1991). Real-Time UNIX Systems

Design and Application Guide, Springer US, US.

Kuo, T.W., Li, C.H. (1999) A fixed-priority-driven open

environment for real-time applications, Proc. 20th

IEEE Real-Time Systems Symposium (Cat.

No.99CB37054).

Li, J., Zheng, G., Zhang, H., & Shi, G. (2019). Task

Scheduling Algorithm for Heterogeneous Real-time

Systems Based on Deadline Constraints, 2019 IEEE

9th Int. Conf. on Electronics Information and

Emergency Communication (ICEIEC).

NUCLEO-F411RE Development Board, STM32 Nucleo-

64, STM32F411RE MCU:

https://ro.farnell.com/stmicroelectronics/nucleo-

f411re/dev-board-cortex-m4-mcu/dp/2433469

Soneoka, T., Oizumi, A., Suda, K. (1993). Highly multi-

tasking real-time systems and their ev.aluation, 1993

Proc. Real-Time Systems Symposium, pp 249-252.

STMicroelectronics, (2019). UM1722 User Manual

Developing applications on STM32Cube with RTOS :

https://www.st.com/resource/en/user_manual/dm0010

5262-developing-applications-on-stm32cube-with-

rtos-stmicroelectronics.pdf

Walker, Richard, C. (2009) Automated devices to control

equipment and machines with remote control and

accountability worldwide, USA:

https://www.ic.gc.ca/opic-

cipo/cpd/eng/patent/2335155/summary.html?pedisabl

e=true

https://deepbluembedded.com/stm32-pwm-example-timer-pwm-mode-tutorial/
https://deepbluembedded.com/stm32-pwm-example-timer-pwm-mode-tutorial/
https://ro.farnell.com/stmicroelectronics/nucleo-f411re/dev-board-cortex-m4-mcu/dp/2433469
https://ro.farnell.com/stmicroelectronics/nucleo-f411re/dev-board-cortex-m4-mcu/dp/2433469
https://www.st.com/resource/en/user_manual/dm00105262-developing-applications-on-stm32cube-with-rtos-stmicroelectronics.pdf
https://www.st.com/resource/en/user_manual/dm00105262-developing-applications-on-stm32cube-with-rtos-stmicroelectronics.pdf
https://www.st.com/resource/en/user_manual/dm00105262-developing-applications-on-stm32cube-with-rtos-stmicroelectronics.pdf

ANNALS OF THE UNIVERSITY OF CRAIOVA

Series: Automation, Computers, Electronics and Mechatronics, Vol.16 (43) No. 1, 2019

ANNALS OF THE UNIVERSITY OF CRAIOVA

Series: Automation, Computers, Electronics and Mechatronics, Vol.16 (43) No. 1, 2019

AUTHOR INDEX

Gheorghe Catalin ANDREI 25, 31

Oana Mihaela CIUCA

25, 31

Stefania Carmen DOBRE

5

Madalin MAMULEANU 11

Mihai Bebe SIMION

17

