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Abstract: The paper deals with the predictive control for linear systedescribed by piecewise affine
(PWA) control laws formulations. The main goal is to redube sensitivity of these schemes with
respect to the model uncertainties. This objective can tagnat by considering worst-case (min-max)
formulations, optimization over the control policies obéupredictive control. These comprehensive
approaches may lead to fastidious on-line optimizatiors ttaducing the range of application. In the
present paper, a two stage predictive strategy is propagkith synthesizes in the first place an
analytical (continuous and piecewise linear) control laasdd on the nominal model and secondly
robustifies the control law in the neighborhood of the equiilim point using the Youla-Kiera
parameter (the feedback gain obtained for the unconsttaioetrol problem - most often assimilated to
the LQR gain). This robustification is globally expanded ltdree state space of the piecewise structure
by means of its corresponding disturbance model.

1. INTRODUCTION we note here the fact that the input to state stability cotscep
were adapted to robust MPC context in the recent studies see
o ___ e.g.Lazar [2006], Limon et al. [2008], with implicationsttee
The model predictive control (MPC) laws are optimisationsystems/control law presenting discontinuities. We hénes t

based techniques which allow constraints handling from th@ie picture of a growing interest for the robustness isseiasad
design stage. Their practical implementation is relateth to the MPC synthesis.

real-time computation of a finite horizon optimal controt se , i , )
quence. The analytical formulation of the optimum and itd the present paper we will approach this problem in a dljght
on-line evaluation avoids the important computationabreff different manner, close to the construction of an estimatio
required for real-time optimisation. Solutions in thisetition mechanism for the constrained _varlabl_es. In Goodwm_et al.
exist for linear and quadratic cost functions subject tedin [2004], a robust control structure is obtained but the pataim
constraints thanks to the Abadie constraint qualificataqd- OPtimisation remains intricate as long as the feasible diosna
win et al. [2004]). It must be said that these are in fact apfart @ré not polytopic. A first study regarding the possible robus
a larger class of parametric convex programs, see Pistitopo N€SS improvement for the explicit affine feedback policy-con
et al. [2007], for which exact or approximate algorithmssexi Structed upon predictive control strategy for linear systevas
see Bemporad et al. [2002b], Olaru and Dumur [2004], Serdiesented in Olaru and Rodriguez-Ayerbe [2006]. The siatple

et al. [2003], Grancharova et al. [2007], Bemporad and filip Way to proce_ed is to consider an observer of the state vagabl
[2006]. as in Goodwin et al. [2004]. The use of an observer preserves

o the dimension of the state space and by consequence the piece
In the case of robust predictive control laws, the model tncewise structure of controller. An interesting feature is faet
tainties and the disturbances can be taken into accouneat that the same observer can be used over the entire domain
design stage. A popular methodology in this direction isthe independently of the active region of the controller. Weerthat
based on a min-max criterium (when the extreme combinatiqRe observer can also be considered as a noise charadterizat
of disturbances or uncertainties are known), see e.g.d&@nri for the prediction model. Nevertheless, the observer does n
and Maciejowski [2004], Bemporad et al. [2002a], Olaru andllow spanning the entire space of stabilizing controllers
Dumur [2007], which comes finally to the resolution of a sin- ) )
gle parametric linear program. The structure of this ultena The present paper introduces an improved result based on the
optimisation is however quite complex and large predictiofoula-Kucera parametrization which spans the space of sta-
horizons cannot be handled due to the exponential growth BYizing controllers. For a two-degree of freedom contall
disturbance realisations that have to be taken into accoet ©One has access to all the stabilizing controllers that pvese
exact explicit solutions being prohibitive in terms of camge-  the same tracking behavior, so the Youlag€ra parameter
tional complexity, Grancharova and Johansen [2009] prm)os()ﬁers morrl-zldegree.s of freedom than the use of an qbseryer.
as an interesting alternative the construction of apprasions. The robustlflcatlc_)n is made such that @he state space diorensi
Different approaches emerged in the last decade for an pptin@f the controller is augmented. The direct consequenceais th
sation over the control policies instead of an optimisatigar ~ the use of the same parameter in each region is not possible.
the control actions, thus leading to attractive robust fdetion,  The continuity between critical regions can be lost withesev
see Lovaas et al. [2008], Goulart et al. [2006]. Tube Mp@_egradatu_)n in stability and_performance_s. The main cloutri
in Langson et al. [2004] is another approach to this compleion here is tvhe reconstruction of the noise mo_del induced by
robust control problem and is somehow connected to the butgfie Youla-Ki€era parameter for the unconstrained case, and
feedback MPC studies of Mayne et al. [2006]. Furthermore,



its use for the generation of the robust piecewise controlle  the optimisation horizon and the prediction model Zadeh
corresponding to the constrained MPC case. and Whalen [1962].

In the following, section 2 briefly recalls the constraine®®® For both cases (5) - (6), the optimal argument includes the

control, and the explicit solution to the associated pateme control sequencai;. Only the first part of this sequence is

optimisation problem. Section 3 considers the robustificat applied effectively to the system input, the complete pdoce

of a linear controller using the Youla-Kera parameter and is reiterated at the next sampling time according to thedece

the equivalent disturbance model. Numerical examplesrare ping horizon principle, see e.g. Mayne et al. [2000]. Realtim

sented in section 4 and the final conclusions is drawn in@gctiimplementation is usually performed through on-line ojan

5. tion procedures (linear or quadratic programming) in otder
determine the optimum corresponding to a particular vafue o

2. CONSTRAINED MPC the state vectar.

) _ In the following section we concentrate on the explicit form
2.1 From receding horizon control problem to the QP/LRgations for the predictive control law. We focus on the quaidr
formulation case by exploiting the uniqueness and continuity of thetimoiu
in this case. One should note that the same results can be ob-
The design of a predictive control law is based on the exigtentained for the LP formulations as long as a continuous sekect
of an analytic/simulation model of the system to be corgahll s assured for the optimal solution see e.g. Olaru and Dumur
In the linear time invariant framework, consider the st@@c® [2006], Spjetvold et al. [2007].
model:
241 = Azy + Bu, te Z*t (1) 22 Explicit solution for quadratic case
Y = C.’I}t + Dut
The analytic solution of (5) - (6) can be constructed along
the lines of sensitivity analysis for parametric optimisat
problems (see Pistikopoulos et al. [2007] for a review of the
control problems under these framework). The optimal smiut
will be expressed as an explicit function of the state vegtor
At each sampling time, the current state vector (assumed to
be measurable}; = z,, is used to elaborate the open loop
optimal control sequencg*:
u = [Ui\t u;+N71|t]/ (2) For the quadratic cost functions and the analytical safutio
of the parametric Quadratic Program (8), see for example the
review paper Alessio and Bemporad [2008].

With z;, z;.7 € R™ the state vector at time andt¢ + T,
respectivelyu; € R™ the control vector at time; A and B
matrices of adequate dimensions and the pdirB) assumed
to be stabilisable.

f:R* - R™so that uMPC = f(x,) (7

with respect to a given cost function:

N-1
u; = GT!JHlllitH [1Pzey nellp+ Z{||Q=’Et+k\th+||Rut+k-|t||p} 1 1
k=0 @) QP(x): V*(z) = 5as’Yac + min §u;Hut + ' F'uy )

) s.t. Gu; <W+ Sz
where ||.||, represents the normp = {1,2,00} and the pair

(Q, A) is assumed to be detectable. The prediction hori¥on Several studies were dedicated to the geometry of the piseew
the weighting terms) = Q' > 0, R = R’ > 0 and the final affine characterization see e.g. Bemporad et al. [2002bfrSe
cost defined by? = P’ > 0 are the tuning knobs of the control et al. [2003], Olaru and Dumur [2004], Mare and DeDona
law. [2005]. Real time implementation is reduced in this casé¢o t

The optimisation of this cost function is performed subjec?valuatlon of this function.

to constraints imposed by the system dynamic, the fundtionRegarding the structure of the multiparametric problems it
constraints and terminal or stability constraints: can be observed that the feasible domain is represented by a
k>0 pgrameterized polyhedro.n. If bounded, then .the optimum is
~ 4) given by a convex combination of parameterized vertices. If

the optimal solution is not unique (usually the case of linea

cost functions (6)), the explicit solution is equivalent &o
Itis considered in the following that all constraints in @ of  point to set mapping as showed in Olaru and Dumur [2006],
polyhedral type. The finite set of constraints can be re&tred  and the continuity of the solution must be a crucial criterio
to obtain a compact formulation: when implementing the solution. Indeed, a continuous obntr
law avoids discontinuous variations on the control in cafse o
disturbances appearing on the state vector.

Tpyhy1ft = ATpqpppe + Buypp)
Hyxg e + Huug e <7, 0 <k <N,

Teynp € X

e Casep=2:

u; = argmin0.5u;Hu; + 2’ Fu,
. us (5) The use of a dual representation of the feasible domain and
subjet to: Gu <W+5Sz projection mechanisms (see Olaru and Dumur [2004] - Olaru
e Case p=Io: and Dumur [2005] for details) provides an insight on the tepo
z* = argminc’z ogy of the optimisation problems and can be advantageous if
. z (6) there exist unbounded directions due to the fact that the gen
subjet to: Gz<W+ Sz erators representation offers the right tool for their desion
with z = {u;&,..., &N} and &, ..., &N, auxiliary as well as for the control of the constraints redundancy.eOnc
variables, the numbe¥; of these variables depending onthe explicit solution of (5) - (6) is obtained, we dispose of a
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Fig. 1. Piecewise affine controller implementation b
analytic description of the control law. Several studiesave yref u System
dedicated to the piecewise affine characterisation (Beatpor +
et al. [2002b], Seron et al. [2003], Olaru and Dumur [2004],
Mare and DeDona [2005]). L
o o . ) Observer
Indeed, the explicit predictive control law is described &y >
collection of piecewise affine function:
I X
Lll’t + ll ’Lf Ty € R1 ~
uptt " = flay) = 9)

Lipxe + 1 if x € Ry
o o Fig. 3. Robustified controller via th® parameter

with Ry, polyhedral critical regions covering feasible states. order to improve robustness of the controlled system Rassit
The structure of such a piecewise controller is shown in Eig. [2003].

Once the look-up table of local laws is available, an effitienknown as the modified controller paradigm Boyd and Barratt
positioning mechanism, as the one proposed in Tendel et plgg1], the Q parametrization begins with the addition of
[2003] based on a search tree, can be constructed such ehatdfjpplementary inputs and outputs (into the controllerhivait
on-line evaluation routine can find the optimal control@eti 7o transfer between therfig , = 0in Fig. 2), which enables

The implementation of the controller is based on the aviifpb [0 connect a stable Youla parameter betweemdb without
of the current state. For the case when the state is not girecfestricting the closed-loop stability. As a result, theseld-loop
measured, optimal solution is proposed in Perez et al. [oodunction betweerb and > depends in an affine way on ti@@
Nevertheless, the optimality in this case does not usuadlyfy ~Parameter, allowing convex specifications:

the complexity of the solution and thus the use of an observer

is usually considered in Goodwin et al. [2004]. Top =Ti1., + T12.,Q To1., (10)

3. YOULA-KU éERA PARAMETRIZTION AND NOISE Considering a System (1) with a state feedback controlléaan
MODEL observer (11), th® parameter is added as shown in FigL3s

a static feedback gain, ari@lis a dynamical system. Applying

the small gain theorem, robustification of this structuresias

unstructured uncertainties, as the additive one showngn3;i

can be performed by minimization éf., norm of the transfer
N&&en by the uncertainty. This problem is convex and can be

see e.g. Boyd and Barratt [1991], Kouvaritakis et al. [1992 ?J\r/r?fr [g%égegrtoﬁ)ég%fgr?z'%%ﬁr LMI, see Regliez and
Rodiiguez and Dumur [2005], Rossiter [2003], robustifying the . N ' .

central controller (corresponding to an empty subset afact Trp1 = Ay + Bug + K(y: — Ciy) (11)
constraints in the MPC formulation). ug = —LE — 1y

3.1 Generalities

This paragraphe proposes the obtention of the disturba
model through the synthesis of a Youlad@ra parameter,

The Youla-Kigera parametrization is a well known techniqudn the case of the uncertainty shown in Fig. 3, the robustitica
in the literature, and its main advantage is to provide aereprcan be expressed as:

sentation of an entire class of stabilizing controllerdalet, the min  ||[W T 0e (12)
Youla parameter, denotég parameter, establishes a bijection QeRHoo

between the class of all stable transfer functions and tescl whereRH ., is the space of stable transfei#, is a weight-
of all stabilizing controllers. If it is inserted in a spelcimay ing transfer function that reflects the frequency rangesravhe
in a closed-loop, th€ parameter does not affect the trackingmodel uncertainties are more important, dng represents the
behavior, but it allows modifying the sensitivity funct®in transfer betweeh andw in Fig. 3.



Other class of specifications, as for example temporal terdvith this decomposition, the solution of the pQP can be sglit
plates, can be used for the synthesis of th@arameter, see in two parts, one dependent ananother dependent an,. It
e.g. Rossiter [2003], Rotjuez and Dumur [2005], Stoica et al. must be noted that the solution dependent:aa the same as

[2007] for details. the one considered in (9). The optimum without constraiits i
w = —H 'Fe — H'F,2, = —Lz — L,x, = —L.%..
3.2 Disturbance model @ parameter Considering that: andx,, are not measured but observed, the

following observer is used:
Considering a state spacéd, Bg, Cq, Dg) representation for {;ml/t = Acie,,,_, + Beuy + Ki(y, — Cee,,,_,)

the Q parameter: Te,), = Tep)py + Ka(ye — Cee, ), _,) (22)
LQiy1 = AQ'er + Bszt . .
iy = Coxq, + Dl (13) We consider the general case of an estimator observer, as the
G =y, — Oy case of one predictor observer is obtained &6y = 0. The
The controller obtained with a state feedback ghjnan ob- antml §|gnal bﬁcomfﬁf i ;Lx_’ Lyky = —Lete. The
server (11) and @ parameter is: obtained controller takes the form:
R R £6t+1/t = Acn-%et + Bcnyt (23)
{ Ti+1 ] _ AcQL { Lt } JrBCQLyt up = Cen@y — Lo Koy
mQH»l R mQt (14) and
Tt _
Uy = CC :| — DQyt Acn - (Ae - che - BeLe(I - K2Ce))
° TQ: Bcn - (Kl - BeLeKQ) Ccn - _(Le(I - K2Oe)) (24)
and:
A— KC — BL+ BDoC —BCq The idea thereafter is to find the disturbance médgl, B.., C,)
Acgr = —BoC Ag } in order to obtain the equivalence (¥(@3). This equivalence
K _BD (15) is obtained by satisfying the following equations:
Do =LK (25)
In order to obtain the disturbance model corresponding to C.. =C. 26
. CQL cn ( )
the Q parameter, we consider an augmented model of (1).
We consider that the unknown dynamics and uncertainties in Beqr = Ben (27)
the model are represented by a noise model. Considering the A=A, 28
. . . o - QL cn ( )
innovation representation 8fstrdom and Wittenmark [1997] we
obtain: From (26) we obtainCg = L, — DgC,, from (27) K; =
{ ;”_1 ngi_t : Bu, + Key (16) [KT BCTQ]T, and from (28)By = B, andAg = A, — B,C,.
t — t t
e; representing a filtered white noise: To resume: the disturbance model,, B, C,) corresponding

(17) parametefAq, Bg,Cq, Dg) is given byB, = Bg and the
(4,,C,) solution of the following nonlinear equation system:

AQ—AQ,—FBUCUZO

to a state feedback, a predictor observer gaik and a
':C'Ut+1 = Avxvt + vat p g Q
et = Cyy, + vy
with v; a zero mean white noise. The extended model is:

xetJrl = Ae‘ret + BeUt + Ke'Ut (18) CQ - L’u + DQCU =0 (29)
Yt :Oexet +Ut LU :H_va(Av,CU)
where: Using this principle in the construction of robustified awtier
zo=| YA = A KCU} one can note that the dependeri¢g A, , C,,) depends on the
Ly 0 A, (19) nature of the central controlle, = [F F,] in (20) is
_|B _ | K _ constructed withA., B., C, and thus depends non linearly on
B, = K. = C.=[C Cy] .
0 B, matrices(A,, C,).

The system is partially controllablel,, describing non control- The problem (29) can be solved using non linear optimisation
lable but observable modes. The predictive control law @n Bechniques. It must be noted that given the nonlinear strect
reformulated upon this new prediction model by maintainingh€ existence and uniqueness of (29) are not proved in the
the same cost function and constraints. The new pQP is givegneral case, but feasibility certificates can be obtainitd w

by: classical optimization routines.
- _ 1, 1 ' The dependence shown in (29) can be further detailed ettplici
QPe(): V7 (we) = gacVewe + b Heu+wcFeu for controllers synthesized with infinite horizon and firfikari-
s.t. Gus W+ Sexe (20) zon. We show in the following the case for the infinite horizon

The different matrices and vectors of (20) can be decomposg®i Case of infinite horizon controller
in two parts; one dependent on thgthe controllable part, and

a second one dependent.op the non controllable part: As the considered cost function (3) has a terminal constrain
F.=[F F,] in the case of impose explicitly this terminal constraithe t
H.,=H because A, is non controllable unconstrained controller will correspond to the infinityrizon
Se =[S Su] optimal controller. This controller can be obtained solvthe

(21) following Riccati equation:



Regions of initial pwa controller

P=A.PA, - (ALPB.)(B.PB. + R)"'(ALPB,) + Q.

(30)
The controller gain is:
L.= (B.PB. + R)"'B.PA, (31)
The obtained controller, considering a predictor obseiszer o
Bop = (Ae = KiCe = BeLo)te, + Kuge 39y

Uy = _Lexet

The observer gain correspondsA@ , as (19) is an innovation
representation. The equivalence &432) can be developed
partitioning P, the solution of the Riccati equation (30)tlaes
partition of A..

Py Pia Fig. 4. Regions of initial PWA controller
P={p p (33)
12 522 The state space representation of the model retained is:
Considering the weighting factap, = [C C,]'[C C,), 1, | _ (0901 [z, n 011 A,
in order to ponder the output of the system, equation (30) T2, | |0 1 Za, 1 ¢ 39
becomes: 1, (39)
Yr = [1 0] x2,
Py = A'PyA— (AP B)(B'PuB + R)™ (A'PuuB)’ + C'C \e consider the following cost function
Py = (A — BL)/.PlQAv + (ABL)/PHKCU +C'C No N
(34) J= Z (2}, Qi) + Z(Au;RAuk) Q>0 R>0
And: k=N, k=1
(40)

Le=|[L L,]=(B'PyB) 'B[PhA PpA, +PyKC,] WthNi=1,N, =5N, =2 R=1,Q=C"C.Wetake this
(35) Q in order to consider the output in the criteria. The constgai

are:
First equation of (34) corresponds to the Riccati equatfanio

tial system, so L is the same as the one of the initial comroll

Considering the equivalence (E(32) we can remark, that in uf <Umae =4 |o1] <4 |22] < Umae (41)
the case when a prediction observer is uded,must be zero,
becausey, is not used to estimate, . This imposes a structural
constraint on the Q parameter. We can also remark, that with

Dg = 0 we can impos&s, = Bg . After some developments, H=22I"Q. I + R,

The matrices of the obtained mpQP problem are:

the following equations must be verified for thg,, C,, Pio F' =20'Q,,I
matrices: Y =0'Q,,0
1 0 Umaz 0 -1 (42)
AQ :AU_BUCU G: —} (]:-) W: Zmaib S: 8 _}
Cq = (B'P1iB+ R)"'B' (P12 A, + PuKC,) 11 e 0 1
Py = (A= BL) P12 A, + (AgL) PKC, + C'C -
(36) Wwith:
The equations (36) can be practically solved using optititina AZ b 0
techniques in order to obtain the unknows, C,, P;2. A AB B
°=l T . (43)
4. EXAMPLE AN2 AN2—1g gN2—2p

In order to fix the ideas a simple system with constraints en th @m = diag(Q, Q. Q,Q, Q) R = diag(R, )
control action is considered: The obtained pQP problem has been solved using MPT Toolbox
Hie) = Y _ 0.1g7¢ (37) for Ma_tlab (Kva_snic_a et al. [2006]). The obtgineq PWA con-
w  1—0.9¢ 1 troller is shown in Fig. 4. A controller of 7 regions is obtaéh
Adding an integral action for step disturbances rejecttbe, Each region and the obtained controller is summarized ile tab

model becomes:

H(gY) = e 0.1¢7" (38) If the state is not measured, an observer is considered. Ve ha
)= Au, — (1—qg1H(1-09¢1) considered a predictor observer, that is (11) within order




Table 1. Initial PWA controller Table 2. Robustified PWA controller

Region L l Region | Le = [L L] l

1 [0.5720 0.2484] 0 1 [L1 —0.5169] l1

2 0 1] 4 2 (Lo 0] lo

3 0 1] —4 3 [Ls 0] I3

4 [0.1516 0.5084] | 1.8351 4 [Lys —0.8375] | Iy

5 [0.1516 0.5084] | —1.8351 5 [Ls —0.8375] | Is

6 0 1] 4 6 [Le¢ 0] le

7 [0 1] —4 7 L7 0] I7

8 [0 1 0 4

15 : 9 0 1 0] —4
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Fig. 5.7, transfer of initial and robustified central controllers

to place the poles of the observer[ih6 0.7]. These poles Fig. 6. Regions of robustified PWA controller
have been chosen in order to have an observer faster than thdained PWA controller is shown in Fig. 6 and is summarized
closed loop with total information. The corresponding &f@n in table 2.

Ty, is shown in Fig. 5. This transfer represents the sensitivi . .
of the controlled system towards the additive unstructure he obtained PWA controller has two more regions than the

S . : : initial controller. In Fig. 6 it can be observed that, if theise
uncertainties. The lower this transfer is, the bigger treepted iy . ’ . .
uncertainty without lost of stability is. state is bigger thah, two other regions are reached. This noise

state and the state of the system is estimated by an obs2éjer (
The robustification of the obtained central controller taga with K, = [K B,] and K, = 0 becausé)q = 0.

unstructured uncertainties giv@s= 5524 ThatisAq =
0.8,Bg = 1,Cg = 0.5191, Dg = 0. We have found & pa-
rameter withDg = 0, in order to keep a predictor observer, an
of degree 1 in order to have an easier visualization of regjion
the example. Th&;, transfer obtained with thi® parameter
is shown in Fig. 5. As it can be observed, the robustificatio
towards additive unstructured uncertainties is improviue
disturbance model corresponding to tijsparameter is ob- The considered neglected dynamic is high, but this is only to
tained solving the following optimisation problem: prove the pertinence of a very simp@ parameter (Fig. 5).
Higher robustness can be obtained considering high order pa
rameters. Simulation results are shown in Fig. 8 for both-con
Aq = Ay +B,C, =0 trollers. The figures show the output, the control signal tiued

Cq - Lv_f DqC, =0 (44)  active region. Fig. 8 shows the results in the case of usiag th
Ly = HFy(Ay, Cy) observer with the poles if0.6 0.7], and Fig. 9 the results
obtained with the robustified controller.

In order to show the robustification effect of the the Youla pa
({ameter, we consider simulation results obtained with aisim

ion model including a neglected high frequency dynamidsTh
dynamic corresponds to a second order system wth= 5
and¢ = 0.08. The Bode diagramme of simulation model and
Aominal model are shown in Fig. 7.

F,(A,,C,), dependent odl, andC,, is obtained as follows:
The results obtained with the observer are instable, asrshrow
Fig. 8. The use of a disturbance model can improve the results

F!=20.Q.,. T.=[F F| - L :
e ewem - € v as shown in Fig. 9, the system has no oscillations and isestabl
Qe,. = diag(Qe, Qe, Qe Qe Qe) (45) iy closed loop. Y

Qe = Céce Ce = [C CU]

©, andT’, are obtained with (43) using. and B, of (19). 5. CONCLUSIONS
The solution of this non linear programming gives, = The paper investigated the robustification methods for ¢ime ¢
—0.520, B, = Bg = 1,C, = —1.3208. The initial PWA con- trol laws obtained in a constrained predictive control feam
troller can be modified according to this disturbance motlee.  work. The idea is to design in a first instance a piecewise
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7. Simulation and nominal model Bode diagramme

controller which satisfies the basic demands in terms ofimngc
performances. In a second stage, the same predictive tontro
structure (prediction horizon, weightings, etc.) is rdifies
using the model arguments accounting for the noise influence
Its has been shown that the structure of initial PWA corgroll

is maintained. The robustified controller can be obtainechfr
the initial one and the noise model parameters.

The robustification of initial unconstrained controllernsmde
through the Youla-K8era parametrization, and then this ro-
bustification is expanded to all the piecewise structurehef t
controller. For this, the disturbance model correspondimg
the Youla-Ki€era parameter is found, and used to regenerate
the piecewise controller by preserving the same inputidutp
behavior, but with an increased robustness.

The limitations of the method lay in the existence of the cor-
responding disturbance model of the Youlaéiéra parameter.
This is transparent in the resolution of a non linear equatio
system. Given that the robustification is done off-line, amy
feasibility can be handled by retuning the MPC parameters.

From another point of view, the approach can be seen as an
extension of the robustification methods for linear systémns
the control laws under constraints.
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