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Abstract: The paper deals with the predictive control for linear systems, described by piecewise affine
(PWA) control laws formulations. The main goal is to reduce the sensitivity of these schemes with
respect to the model uncertainties. This objective can be attained by considering worst-case (min-max)
formulations, optimization over the control policies or tube predictive control. These comprehensive
approaches may lead to fastidious on-line optimization thus reducing the range of application. In the
present paper, a two stage predictive strategy is proposed,which synthesizes in the first place an
analytical (continuous and piecewise linear) control law based on the nominal model and secondly
robustifies the control law in the neighborhood of the equilibrium point using the Youla-Kǔcera
parameter (the feedback gain obtained for the unconstrained control problem - most often assimilated to
the LQR gain). This robustification is globally expanded to all the state space of the piecewise structure
by means of its corresponding disturbance model.

1. INTRODUCTION

The model predictive control (MPC) laws are optimisation
based techniques which allow constraints handling from the
design stage. Their practical implementation is related tothe
real-time computation of a finite horizon optimal control se-
quence. The analytical formulation of the optimum and its
on-line evaluation avoids the important computational effort
required for real-time optimisation. Solutions in this direction
exist for linear and quadratic cost functions subject to linear
constraints thanks to the Abadie constraint qualification (Good-
win et al. [2004]). It must be said that these are in fact a partof
a larger class of parametric convex programs, see Pistikopoulos
et al. [2007], for which exact or approximate algorithms exist,
see Bemporad et al. [2002b], Olaru and Dumur [2004], Seron
et al. [2003], Grancharova et al. [2007], Bemporad and Filippi
[2006].

In the case of robust predictive control laws, the model uncer-
tainties and the disturbances can be taken into account at the
design stage. A popular methodology in this direction is theone
based on a min-max criterium (when the extreme combination
of disturbances or uncertainties are known), see e.g. Kerrigan
and Maciejowski [2004], Bemporad et al. [2002a], Olaru and
Dumur [2007], which comes finally to the resolution of a sin-
gle parametric linear program. The structure of this ultimate
optimisation is however quite complex and large prediction
horizons cannot be handled due to the exponential growth of
disturbance realisations that have to be taken into account. The
exact explicit solutions being prohibitive in terms of computa-
tional complexity, Grancharova and Johansen [2009] proposed
as an interesting alternative the construction of approximations.
Different approaches emerged in the last decade for an optimi-
sation over the control policies instead of an optimisationover
the control actions, thus leading to attractive robust formulation,
see Løvaas et al. [2008], Goulart et al. [2006]. Tube MPC
in Langson et al. [2004] is another approach to this complex
robust control problem and is somehow connected to the output
feedback MPC studies of Mayne et al. [2006]. Furthermore,

we note here the fact that the input to state stability concepts
were adapted to robust MPC context in the recent studies see
e.g. Lazar [2006], Limon et al. [2008], with implications tothe
systems/control law presenting discontinuities. We have thus
the picture of a growing interest for the robustness issues related
to the MPC synthesis.

In the present paper we will approach this problem in a slightly
different manner, close to the construction of an estimation
mechanism for the constrained variables. In Goodwin et al.
[2004], a robust control structure is obtained but the parametric
optimisation remains intricate as long as the feasible domains
are not polytopic. A first study regarding the possible robust-
ness improvement for the explicit affine feedback policy con-
structed upon predictive control strategy for linear systems was
presented in Olaru and Rodriguez-Ayerbe [2006]. The simplest
way to proceed is to consider an observer of the state variables
as in Goodwin et al. [2004]. The use of an observer preserves
the dimension of the state space and by consequence the piece-
wise structure of controller. An interesting feature is thefact
that the same observer can be used over the entire domain
independently of the active region of the controller. We note that
the observer can also be considered as a noise characterization
for the prediction model. Nevertheless, the observer does not
allow spanning the entire space of stabilizing controllers.

The present paper introduces an improved result based on the
Youla-Kučera parametrization which spans the space of sta-
bilizing controllers. For a two-degree of freedom controller,
one has access to all the stabilizing controllers that preserve
the same tracking behavior, so the Youla-Kučera parameter
offers more degrees of freedom than the use of an observer.
The robustification is made such that the state space dimension
of the controller is augmented. The direct consequence is that
the use of the same parameter in each region is not possible.
The continuity between critical regions can be lost with severe
degradation in stability and performances. The main contribu-
tion here is the reconstruction of the noise model induced by
the Youla-Kǔcera parameter for the unconstrained case, and



its use for the generation of the robust piecewise controller
corresponding to the constrained MPC case.

In the following, section 2 briefly recalls the constrained MPC
control, and the explicit solution to the associated parametric
optimisation problem. Section 3 considers the robustification
of a linear controller using the Youla-Kučera parameter and
the equivalent disturbance model. Numerical examples are pre-
sented in section 4 and the final conclusions is drawn in section
5.

2. CONSTRAINED MPC

2.1 From receding horizon control problem to the QP/LP
formulation

The design of a predictive control law is based on the existence
of an analytic/simulation model of the system to be controlled.
In the linear time invariant framework, consider the state space
model:

xt+1 = Axt + But t ∈ Z+

yt = Cxt + Dut
(1)

With xt, xt+1 ∈ R
n the state vector at timet and t + Te

respectively,ut ∈ R
m the control vector at timet; A andB

matrices of adequate dimensions and the pair(A,B) assumed
to be stabilisable.

At each sampling time, the current state vector (assumed to
be measurable)xt = xt|t is used to elaborate the open loop
optimal control sequenceu∗:

u
∗
t =

[

u′
t|t . . . u′

t+N−1|t

]′
(2)

with respect to a given cost function:

u
∗
t = arg min

ut

‖Pxt+N |t‖p +

N−1
∑

k=0

{‖Qxt+k|t‖p +‖Rut+k|t‖p}

(3)

where‖.‖p represents the normp = {1, 2,∞} and the pair
(Q,A) is assumed to be detectable. The prediction horizonN ,
the weighting termsQ = Q′ ≥ 0, R = R′ > 0 and the final
cost defined byP = P ′ ≥ 0 are the tuning knobs of the control
law.

The optimisation of this cost function is performed subject
to constraints imposed by the system dynamic, the functional
constraints and terminal or stability constraints:







xt+k+1|t = Axt+k|t + But+k|t k ≥ 0
Hxxt+k|t + Huut+k|t ≤ γ, 0 ≤ k ≤ N,
xt+N |t ∈ XN

(4)

It is considered in the following that all constraints in (4)are of
polyhedral type. The finite set of constraints can be restructured
to obtain a compact formulation:

• Case p = 2:

u
∗
t = arg min

ut

0.5u′
tHut + x′Fut

subjet to : Gut ≤ W + Sx
(5)

• Case p = 1,∞:

z
∗ = arg min

z
cT

z

subjet to : Gz ≤ W + Sx
(6)

with z = {ut; ξ1, . . . , ξNξ
} and ξ1, . . . , ξNξ

auxiliary
variables, the numberNξ of these variables depending on

the optimisation horizon and the prediction model Zadeh
and Whalen [1962].

For both cases (5) - (6), the optimal argument includes the
control sequenceu∗

t . Only the first part of this sequence is
applied effectively to the system input, the complete procedure
is reiterated at the next sampling time according to the reced-
ing horizon principle, see e.g. Mayne et al. [2000]. Real time
implementation is usually performed through on-line optimisa-
tion procedures (linear or quadratic programming) in orderto
determine the optimum corresponding to a particular value of
the state vectorx.

In the following section we concentrate on the explicit formu-
lations for the predictive control law. We focus on the quadratic
case by exploiting the uniqueness and continuity of the solution
in this case. One should note that the same results can be ob-
tained for the LP formulations as long as a continuous selection
is assured for the optimal solution see e.g. Olaru and Dumur
[2006], Spjøtvold et al. [2007].

2.2 Explicit solution for quadratic case

The analytic solution of (5) - (6) can be constructed along
the lines of sensitivity analysis for parametric optimisation
problems (see Pistikopoulos et al. [2007] for a review of the
control problems under these framework). The optimal solution
will be expressed as an explicit function of the state vectorx.

f : R
n → R

m so that uMPC
t = f(xt) (7)

For the quadratic cost functions and the analytical solution
of the parametric Quadratic Program (8), see for example the
review paper Alessio and Bemporad [2008].

QP(x): V ∗(x) =
1

2
x′Y x + min

z

1

2
u
′
tHut + x′F ′

ut

s.t. Gut ≤ W + Sx
(8)

Several studies were dedicated to the geometry of the piecewise
affine characterization see e.g. Bemporad et al. [2002b], Seron
et al. [2003], Olaru and Dumur [2004], Mare and DeDona
[2005]. Real time implementation is reduced in this case to the
evaluation of this function.

Regarding the structure of the multiparametric problems it
can be observed that the feasible domain is represented by a
parameterized polyhedron. If bounded, then the optimum is
given by a convex combination of parameterized vertices. If
the optimal solution is not unique (usually the case of linear
cost functions (6)), the explicit solution is equivalent toa
point to set mapping as showed in Olaru and Dumur [2006],
and the continuity of the solution must be a crucial criterion
when implementing the solution. Indeed, a continuous control
law avoids discontinuous variations on the control in case of
disturbances appearing on the state vector.

The use of a dual representation of the feasible domain and
projection mechanisms (see Olaru and Dumur [2004] - Olaru
and Dumur [2005] for details) provides an insight on the topol-
ogy of the optimisation problems and can be advantageous if
there exist unbounded directions due to the fact that the gen-
erators representation offers the right tool for their description
as well as for the control of the constraints redundancy. Once
the explicit solution of (5) - (6) is obtained, we dispose of an
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Fig. 1. Piecewise affine controller implementation

analytic description of the control law. Several studies were
dedicated to the piecewise affine characterisation (Bemporad
et al. [2002b], Seron et al. [2003], Olaru and Dumur [2004],
Mare and DeDona [2005]).

Indeed, the explicit predictive control law is described bya
collection of piecewise affine function:

uMPC
t = f(xt) =











L1xt + l1 if xt ∈ R1

· · · · · ·
Lkxt + lk if xt ∈ Rk

· · · · · ·

(9)

with Rk polyhedral critical regions covering feasible states.

The structure of such a piecewise controller is shown in Fig.1.
Once the look-up table of local laws is available, an efficient
positioning mechanism, as the one proposed in Tøndel et al.
[2003] based on a search tree, can be constructed such that the
on-line evaluation routine can find the optimal control action.

The implementation of the controller is based on the availability
of the current state. For the case when the state is not directly
measured, optimal solution is proposed in Perez et al. [2004].
Nevertheless, the optimality in this case does not usually justify
the complexity of the solution and thus the use of an observer
is usually considered in Goodwin et al. [2004].

3. YOULA-KUČERA PARAMETRIZTION AND NOISE
MODEL

3.1 Generalities

This paragraphe proposes the obtention of the disturbance
model through the synthesis of a Youla-Kučera parameter,
see e.g. Boyd and Barratt [1991], Kouvaritakis et al. [1992],
Rodŕıguez and Dumur [2005], Rossiter [2003], robustifying the
central controller (corresponding to an empty subset of active
constraints in the MPC formulation).

The Youla-Kǔcera parametrization is a well known technique
in the literature, and its main advantage is to provide a repre-
sentation of an entire class of stabilizing controllers. Infact, the
Youla parameter, denotedQ parameter, establishes a bijection
between the class of all stable transfer functions and the class
of all stabilizing controllers. If it is inserted in a special way
in a closed-loop, theQ parameter does not affect the tracking
behavior, but it allows modifying the sensitivity functions in
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Fig. 3. Robustified controller via theQ parameter

order to improve robustness of the controlled system Rossiter
[2003].

Known as the modified controller paradigm Boyd and Barratt
[1991], the Q parametrization begins with the addition of
supplementary inputs and outputs (into the controller) with a
zero transfer between them (T22zb

= 0 in Fig. 2), which enables
to connect a stable Youla parameter betweenz andb without
restricting the closed-loop stability. As a result, the closed-loop
function betweenb andz depends in an affine way on theQ
parameter, allowing convex specifications:

Tzb = T11zb
+ T12zb

Q T21zb
(10)

Considering a system (1) with a state feedback controller and an
observer (11), theQ parameter is added as shown in Fig. 3.L is
a static feedback gain, andQ is a dynamical system. Applying
the small gain theorem, robustification of this structure towards
unstructured uncertainties, as the additive one shown in Fig. 3,
can be performed by minimization ofH∞ norm of the transfer
seen by the uncertainty. This problem is convex and can be
solved by linear programming or LMI, see Rodrı́guez and
Dumur [2005], Stoica et al. [2007].

x̂t+1 = Ax̂t + But + K(yt − Cx̂t)
ut = −Lx̂ − ũt

(11)

In the case of the uncertainty shown in Fig. 3, the robustification
can be expressed as:

min
Q∈RH∞

‖WTub‖∞ (12)

whereRH∞ is the space of stable transfers,W is a weight-
ing transfer function that reflects the frequency ranges where
model uncertainties are more important, andTbu represents the
transfer betweenb andu in Fig. 3.



Other class of specifications, as for example temporal tem-
plates, can be used for the synthesis of theQ parameter, see
e.g. Rossiter [2003], Rodrı́guez and Dumur [2005], Stoica et al.
[2007] for details.

3.2 Disturbance model ofQ parameter

Considering a state space (AQ, BQ, CQ,DQ) representation for
theQ parameter:

{

xQt+1
= AQxQt

+ BQỹt

ũt = CQxQt
+ DQỹt

ỹt = yt − Cx̂t

(13)

The controller obtained with a state feedback gainL, an ob-
server (11) and aQ parameter is:

[

x̂t+1

xQt+1

]

= AcQL

[

x̂t

xQt

]

+ BcQL
yt

ut = CcQL

[

x̂t

xQt

]

− DQyt

(14)

and:

AcQL
=

[

A − KC − BL + BDQC −BCQ

−BQC AQ

]

BcQL
=

[

K − BDQ

BQ

]

CcQL
= [−L + DQC −CQ ]

(15)

In order to obtain the disturbance model corresponding to
the Q parameter, we consider an augmented model of (1).
We consider that the unknown dynamics and uncertainties in
the model are represented by a noise model. Considering the
innovation representation ofÅström and Wittenmark [1997] we
obtain:

{

xt+1 = Axt + But + Ket

yt = Cxt + et
(16)

et representing a filtered white noise:
{

xvt+1
= Avxvt

+ Bvvt

et = Cvxvt
+ vt

(17)

with vt a zero mean white noise. The extended model is:
xet+1

= Aexet
+ Beut + Kevt

yt = Cexet
+ vt

(18)

where:

xe =

[

x
xv

]

Ae =

[

A KCv

0 Av

]

Be =

[

B
0

]

Ke =

[

K
Bv

]

Ce = [ C Cv ]
(19)

The system is partially controllable,Av describing non control-
lable but observable modes. The predictive control law can be
reformulated upon this new prediction model by maintaining
the same cost function and constraints. The new pQP is given
by:

QPe(x): V ∗(xe) =
1

2
x′

eYexe + min
u

1

2
u
′Heu + x′

eF
′
eu

s.t. Gu ≤ W + Sexe

(20)
The different matrices and vectors of (20) can be decomposed
in two parts; one dependent on thex, the controllable part, and
a second one dependent onxv, the non controllable part:

Fe = [F Fv]
He = H because Av is non controllable
Se = [S Sv]

(21)

With this decomposition, the solution of the pQP can be splited
in two parts, one dependent onx another dependent onxv. It
must be noted that the solution dependent onx is the same as
the one considered in (9). The optimum without constraints is
ut = −H−1Fx − H−1Fvxv = −Lx − Lvxv = −Lexe.
Considering thatx andxv are not measured but observed, the
following observer is used:

x̂et+1/t
= Aex̂et/t−1

+ Beut + K1(yt − Cex̂et/t−1
)

x̂et/t
= x̂et/t−1

+ K2(yt − Cex̂et/t−1
)

(22)

We consider the general case of an estimator observer, as the
case of one predictor observer is obtained forK2 = 0. The
control signal becomesut = −Lx̂ − Lvx̂v = −Lex̂e. The
obtained controller takes the form:

x̂et+1/t
= Acnx̂et

+ Bcnyt

ut = Ccnx̂t − LeK2yt
(23)

and:
Acn = (Ae − K1Ce − BeLe(I − K2Ce))
Bcn = (K1 − BeLeK2) Ccn = −(Le(I − K2Ce))

(24)

The idea thereafter is to find the disturbance model(Av, Bc, Cv)
in order to obtain the equivalence (14)≡(23). This equivalence
is obtained by satisfying the following equations:

DQ = LeK2 (25)

CcQL
= Ccn (26)

BcQL
= Bcn (27)

AcQL
= Acn (28)

From (26) we obtainCQ = Lv − DQCv, from (27) K1 =
[

KT BT
Q

]T
, and from (28)BQ = Bv andAQ = Av −BvCv.

To resume: the disturbance model(Av, Bv, Cv) corresponding
to a state feedbackL, a predictor observer gainK and aQ
parameter(AQ, BQ, CQ,DQ) is given byBv = BQ and the
(Av, Cv) solution of the following nonlinear equation system:







AQ − Av + BvCv = 0
CQ − Lv + DQCv = 0
Lv = H−1Fv(Av, Cv)

(29)

Using this principle in the construction of robustified controller
one can note that the dependenceFv(Av, Cv) depends on the
nature of the central controller.Fe = [F Fv] in (20) is
constructed withAe, Be, Ce and thus depends non linearly on
matrices(Av, Cv).

The problem (29) can be solved using non linear optimisation
techniques. It must be noted that given the nonlinear structure,
the existence and uniqueness of (29) are not proved in the
general case, but feasibility certificates can be obtained with
classical optimization routines.

The dependence shown in (29) can be further detailed explicitly
for controllers synthesized with infinite horizon and finitehori-
zon. We show in the following the case for the infinite horizon.

3.3 Case of infinite horizon controller

As the considered cost function (3) has a terminal constraint,
in the case of impose explicitly this terminal constraint, the
unconstrained controller will correspond to the infinity horizon
optimal controller. This controller can be obtained solving the
following Riccati equation:



P = A′
ePAe − (A′

ePBe)(B
′
ePBe + R)−1(A′

ePBe)
′ + Qr

(30)

The controller gain is:

Le = (B′
ePBe + R)−1B′

ePAe (31)

The obtained controller, considering a predictor observeris:

x̂et+1
= (Ae − K1Ce − BeLe)x̂et

+ K1yt

ut = −Lex̂et

(32)

The observer gain corresponds toKe , as (19) is an innovation
representation. The equivalence (14)≡(32) can be developed
partitioning P, the solution of the Riccati equation (30) asthe
partition ofAe.

P =

(

P11 P12

P ′
12 P22

)

(33)

Considering the weighting factorQr = [C Cv]′[C Cv],
in order to ponder the output of the system, equation (30)
becomes:

P11 = A′P11A − (A′P11B)(B′P11B + R)−1(A′P11B)′ + C ′C
P12 = (A − BL)′P12Av + (ABL)′P11KCv + C ′C

(34)

And:

Le = [ L Lv ] = (B′P11B)−1B′[P11A P12Av + P11KCv]
(35)

First equation of (34) corresponds to the Riccati equation of ini-
tial system, so L is the same as the one of the initial controller.
Considering the equivalence (14)≡(32) we can remark, that in
the case when a prediction observer is used,DQ must be zero,
becauseyt is not used to estimatext . This imposes a structural
constraint on the Q parameter. We can also remark, that with
DQ = 0 we can imposeBv = BQ . After some developments,
the following equations must be verified for theAv, Cv, P12

matrices:







AQ = Av − BvCv

CQ = (B′P11B + R)−1B′(P12Av + P11KCv)
P12 = (A − BL)′P12Av + (ABL)′P11KCv + C ′C

(36)

The equations (36) can be practically solved using optimization
techniques in order to obtain the unknownsAv, Cv, P12.

4. EXAMPLE

In order to fix the ideas a simple system with constraints on the
control action is considered:

H(q−1) =
yt

ut

=
0.1q−1

1 − 0.9q−1
(37)

Adding an integral action for step disturbances rejection,the
model becomes:

H(q−1) =
yt

∆ut

=
0.1q−1

(1 − q−1)(1 − 0.9q−1)
(38)
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The state space representation of the model retained is:
[

x1t+1

x2t+1

]

=

[

0.9 0.1
0 1

] [

x1t

x2t

]

+

[

0.1
1

]

∆ut

yt = [ 1 0 ]

[

x1t

x2t

] (39)

We consider the following cost function

J =

N2
∑

k=N1

(x′
kQxk) +

Nu
∑

k=1

(∆u′
kR∆uk) Q ≥ 0 R > 0

(40)

With N1 = 1, N2 = 5, Nu = 2, R = 1, Q = C ′C. We take this
Q in order to consider the output in the criteria. The constraints
are:

|u| < umax = 4 |x1| < 4 |x2| < umax (41)

The matrices of the obtained mpQP problem are:

H = 2Γ′QmΓ + Rm

F ′ = 2Θ′QmΓ
Y = Θ′QmΘ

G =







1 0
−1 0

1 1
−1 −1






W =







umax

umax

umax

umax






S =







0 −1
0 1
0 −1
0 1







(42)

With:

Θ =











A

A2

...
AN2











Γ =









B 0
AB B

...
...

AN2−1B AN2−2B









Qm = diag(Q,Q,Q,Q,Q) Rm = diag(R,R)

(43)

The obtained pQP problem has been solved using MPT Toolbox
for Matlab (Kvasnica et al. [2006]). The obtained PWA con-
troller is shown in Fig. 4. A controller of 7 regions is obtained.
Each region and the obtained controller is summarized in table
1.

If the state is not measured, an observer is considered. We have
considered a predictor observer, that is (11) withK, in order



Table 1. Initial PWA controller

Region L l

1 [0.5720 0.2484] 0
2 [0 1] 4
3 [0 1] −4
4 [0.1516 0.5084] 1.8351
5 [0.1516 0.5084] −1.8351
6 [0 1] 4
7 [0 1] −4
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Fig. 5.Tbu transfer of initial and robustified central controllers

to place the poles of the observer in[0.6 0.7]. These poles
have been chosen in order to have an observer faster than the
closed loop with total information. The corresponding transfer
Tbu is shown in Fig. 5. This transfer represents the sensitivity
of the controlled system towards the additive unstructured
uncertainties. The lower this transfer is, the bigger the accepted
uncertainty without lost of stability is.

The robustification of the obtained central controller towards
unstructured uncertainties givesQ = −0.5191q−1

1−0.8q−1 . That isAQ =

0.8, BQ = 1, CQ = 0.5191,DQ = 0. We have found aQ pa-
rameter withDQ = 0, in order to keep a predictor observer, and
of degree 1 in order to have an easier visualization of regions in
the example. TheTbu transfer obtained with thisQ parameter
is shown in Fig. 5. As it can be observed, the robustification
towards additive unstructured uncertainties is improved.The
disturbance model corresponding to thisQ parameter is ob-
tained solving the following optimisation problem:

AQ − Av + BvCv = 0
CQ − Lv + DQCv = 0
Lv = H−1Fv(Av, Cv)

(44)

Fv(Av, Cv), dependent onAv andCv, is obtained as follows:

F ′
e = 2Θ′

eQem
Γe = [F ′ F ′

v]
Qem

= diag(Qe, Qe, Qe, Qe, Qe)
Qe = C ′

eCe Ce = [C Cv]
(45)

Θ′
e andΓe are obtained with (43) usingAe andBe of (19).

The solution of this non linear programming givesAv =
−0.520, Bv = BQ = 1, Cv = −1.3208. The initial PWA con-
troller can be modified according to this disturbance model.The

Table 2. Robustified PWA controller

Region Le = [L Lv ] l

1 [L1 − 0.5169] l1

2 [L2 0] l2

3 [L3 0] l3

4 [L4 − 0.8375] l4

5 [L5 − 0.8375] l5

6 [L6 0] l6

7 [L7 0] l7

8 [0 1 0] 4
9 [0 1 0] −4

1

52

4 3

6
7

8

9

Fig. 6. Regions of robustified PWA controller

obtained PWA controller is shown in Fig. 6 and is summarized
in table 2.

The obtained PWA controller has two more regions than the
initial controller. In Fig. 6 it can be observed that, if the noise
state is bigger than5, two other regions are reached. This noise
state and the state of the system is estimated by an observer (20)
with K1 = [K Bv] andK2 = 0 becauseDQ = 0.

In order to show the robustification effect of the the Youla pa-
rameter, we consider simulation results obtained with a simula-
tion model including a neglected high frequency dynamic. This
dynamic corresponds to a second order system withω0 = 5
andζ = 0.08. The Bode diagramme of simulation model and
nominal model are shown in Fig. 7.

The considered neglected dynamic is high, but this is only to
prove the pertinence of a very simpleQ parameter (Fig. 5).
Higher robustness can be obtained considering high order pa-
rameters. Simulation results are shown in Fig. 8 for both con-
trollers. The figures show the output, the control signal andthe
active region. Fig. 8 shows the results in the case of using the
observer with the poles in[0.6 0.7], and Fig. 9 the results
obtained with the robustified controller.

The results obtained with the observer are instable, as shown in
Fig. 8. The use of a disturbance model can improve the results,
as shown in Fig. 9, the system has no oscillations and is stable
in closed loop.

5. CONCLUSIONS

The paper investigated the robustification methods for the con-
trol laws obtained in a constrained predictive control frame-
work. The idea is to design in a first instance a piecewise
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Fig. 7. Simulation and nominal model Bode diagramme
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Fig. 8. Simulation results with initial observer
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Fig. 9. Simulation results for robustified controller

controller which satisfies the basic demands in terms of tracking
performances. In a second stage, the same predictive control
structure (prediction horizon, weightings, etc.) is robustified
using the model arguments accounting for the noise influence.
Its has been shown that the structure of initial PWA controller
is maintained. The robustified controller can be obtained from
the initial one and the noise model parameters.

The robustification of initial unconstrained controller ismade
through the Youla-Kǔcera parametrization, and then this ro-
bustification is expanded to all the piecewise structure of the
controller. For this, the disturbance model correspondingto
the Youla-Kǔcera parameter is found, and used to regenerate
the piecewise controller by preserving the same input/output
behavior, but with an increased robustness.

The limitations of the method lay in the existence of the cor-
responding disturbance model of the Youla-Kučera parameter.
This is transparent in the resolution of a non linear equation
system. Given that the robustification is done off-line, anyin-
feasibility can be handled by retuning the MPC parameters.

From another point of view, the approach can be seen as an
extension of the robustification methods for linear systemsto
the control laws under constraints.
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