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Abstract: The system sensitivity analysis (SSA) is a mathematical method used in the behavior 
dynamic systems study. Simulation estimates time evolution and quantitative changes for the 
system variables in the case of changes in internal structure. The study of SSA for populations 
cells control, proves that SSA can be apply also to biological systems, it offers useful data for the 
medical practice and it contributes to introduce the computer assisted diagnosis in current medical 
assistance. 
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1. INTRODUCTION 

Mathematical modeling and simulation are extremely 
effective methods, frequently used in all areas. During 
past years, important steps have been taken in order to 
involve systems theory and in the study of living 
organisms. Unfortunately, these attempts have not always 
been appreciated by biologists and medics, the main 
argument being the insufficient accuracy with which 
abstract systems model living systems. There are two 
objective causes that limit the performance of these 
models: 

 The complexity of living organisms 
 Difficulties met with experimental data acquisition 

and processing 

The complexity of living systems, even in the case of 
inferior organisms is vastly superior to technical man-
made structures. These consist of a large number of sub-
systems, between which multiple connections are 
established. The isolation of a biological sub-system, with 
the purpose of studying it, is, inevitably, accompanied by 
altering the system’s function and behavior. For this 
reason, experimental data differs from that corresponding 
to a normal functioning. In conclusion, it is recommended 
that the system is studied, as much as possible, in its 
whole. This conception means treating living systems as 
causal systems, deterministic or stochastic, multi-variable 
and ierarchy-based. The living organism is a complex of 
system, in a dynamic balance, permanently controlled 
through control loops (feedback). A characteristic of 
evolved living organisms is the robustness and 
adaptability to the environment. These qualities are the 
consequence of the control structures. Robustness is 
ensured by multiple control loops for each parameter, 
while short-term adaptability is achieved with the help of 

adaptive control systems, with variable structure, optimal 
or extreme. 

Another difficulty in modeling and simulation is the non-
linear character of most living systems as well as the non-
stationary parameters. Data acquisition and processing 
raises problems technical in nature, because, structurally, 
a large part of the system’s parameters are either 
inaccessible, or can not be converted into measurable 
units. For this reason, most of the times, the data that is 
available is insufficient to globally characterization the 
system.  

From a systemic point of view, processes that take place 
at a cellular level (including cancerous tumors) have a 
strong non-linear character. Although, regarding their 
study and modeling remarkable progress has been made, 
the development and application of modern methods is 
slower in comparisons to other areas. This delay is 
caused, mainly, by two characteristics typical for 
bioprocesses. 

 First of all, modeling these is exceptionally difficult. 
These systems consist of a series of interactions with 
other processes and, as a result, their functioning and 
especially their growth dynamics are, most of the 
times, hard to comprehend, strongly non-linear and 
non-stationary. Also, the repeatability of experiments 
is uncertain, while the lack of measurement accuracy 
can lead to a series of identification issues. 

 Secondly, the application of monitoring strategies is 
confronted, in most cases, with the absence of typical 
instrumentations, secure and cheap, destined for the 
direct and/or in real time monitoring of biological 
and biochemical variables. Currently, the market 
offers few sensors capable of supplying this kind of 
measurements, while inaccessible or immeasurable 



 
 

     

 

parameters need to be determined through off-line 
laboratory analysis. The cost and duration of such 
analysis limits their frequency and leads to an 
increase in overall expenses.  

For the overcoming of such obstacles, it is necessary to 
use advanced modeling and identification techniques that 
use software sensors, in order to reproduce states and/or 
immeasurable parameters. Mathematical modeling turns 
the synthesis of the experimentally obtained data into a 
unitary system, allowing the underlining of the internal 
structure and the causal links between component parts 
and measures the weight with which every subsystem 
intervenes in accomplishing the system’s functions. 
Simulation ensures the validation of concurrent theories, 
the understanding of physiopathological modifications 
and suggests relevant experiments. From what we have 
shown, we can tell that the modeling and simulation of 
living systems will be part of the modern trend of 
integrating obtained knowledge through inter-disciplinary 
collaborations. 

2. MODEL PREDICTIVE CONTROL 

Model Predictive Control (MPC) has known a spectacular 
development in the last decade. Its success is due to good 
performance obtained for processes with “difficult” 
dynamics (non-minimal phase, dead-times, etc.), that lead 
to difficulties for classical automated control. However, 
predictive control methods are not generally use-able. 
They can only be applied to those processes for which a 
mathematical model and reference are known a-priori. 

These two conditions basically, represent the 
disadvantage of predictive methods. These, however, can 
not be avoided, because in order to predict a process’ 
future behavior, we need to use a process model and the 
use of a pre-established reference benchmark.  

The main objective of MPC is to make predictions 
regarding a process’ future actions, based on a 
mathematical model and to select, according to these and 
the imposed reference, the correct command inputs.  

Types of MPC: 
a) Linear MPC 
 A linear model is used: BuAxx +=&  
 A square cost function: F = xTQx + uTRu 
 Linear restrictions: Hx + Gu < 0 

b)    Non-linear MPC 
 A non-linear model is used: ( )uxfx ,=&  
 The cost function may not be squared: F(x,u) 
 Non-linear restrictions: h(x,u) < 0 

All model predictive control (MPC) systems rely on the 
idea of generating values for process inputs as solutions 
of an on-line (real-time) optimization problem. That 
problem is constructed on the basis of a process model 
and a predictive algorithm. Fig. 1 shows the structure of a 
typical MPC system.  

The whole philosophy of predictive control regarding the 
creation of an anticipative effect,  by using explicit know- 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Model predictive control scheme. 
 
ledge of the future trajectory can be presented shortly as 
follows:  

 The defining of a mathematical model of the 
system, in order to predict its future behavior. 

 The minimizing of a square cost function on a 
finite horizon, by using prediction errors 

 The elaboration of a future control sequence, with 
only the first value being applied to the system and 
model. 

 The repeating of the entire procedure for the next 
sample, according to the chosen horizon. 

3. SMITH PREDICTOR FOR DELAYED SYSTEMS 

The more popular scheme for control processes affected 
by time delay was proposed by O.J Smith (Smith, 1959) 

and it is shown in Fig. 2. Let ( ) ( ) τsesGsP −=  be the 
transfer function of the process and let’s indicate the 
setpoint with oy . This algorithm requires a minimal 
knowledge of the process to describe it through a transfer 
function (model): 

 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2. The structure for Smith predictor. 
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( ) ( ) ms
mm esGsP τ−=     (1) 

As shown in Fig. 2, the feedback is closed not on the 
process value y, but on the z variable, which has the same 
value that y had mτ  seconds earlier, and therefore it is in 
some ways a „prediction” of the measure; that is why this 
control architecture is called Smith „predictor” 
(Veronessi, 2003). 

4. THE MODEL OF SEPSIS EVOLUTION 

The cellular network is modeled as a collection of 
nonlinear differential equations, where reaction rates and 
compound concentrations are the variables (Dobrescu et 
al., 2007). Brause (2003) uses a reduced order 
approximation model, with three variables.   

• P(t)=P representing the pathogen influence, ]1,0[∈P  
• M(t)=M representing the immune response, namely 
the macrophage action, ]1,0[∈M , and 
• D(t)=D representing the percent of damaged noble 
cell tissue, which is destroyed in the fight between P 
and M, ]1,0[∈D . 

The equations of the mathematical model are Brause 
(2003): 

MPPPP 21 )1( α−−α=
•

, 2,1 ,0 =>α ii       (2) 

))(1( 321 DPMMMM β+β−+β−=
•

, 3,1 ,0 =>β ii    (3) 

)/)(( 321 γθ−γ+γ−=
•

MhDD , 3,1 ,0 =>γ ii    (4) 

where 5.0=θ  is a threshold value and 

            )]exp(1/[1)( xxh −+=     (5) 

A typical parameter regime takes the next values: 

 ;0.1 ;1.0 21 =α=α  

 ;0.1 ;0.10 ;0.1 321 =β=β=β       (6) 

 ;25.0 ;04.0 ;1.0 321 =γ=γ=γ  

The dynamical model described by equation (2, 3 and 4) 
reflects some basic qualitative features of the sepsis 
phenomenon and assume that the rate of cells damage 
increases also with a sigmoid function (5) of macrophages 
action, limited by a threshold θ .  

In the application developed by the authors, we have used 
a linearized version of the mathematical model described 
in equations (7, 8 and 9), accomplishing through this, and 
a compatibility with the Smith predictor. 

MPMPP Δα−Δα−−α=Δ
•

20201 ])21([   (7) 

DMMMDP
PMMM

Δβ−Δβ−−β+β+
+Δ−β=Δ

•

03100302

002

])21)([(
)1(  (8) 

DMMD Δγ−Δγθ−−
γ
γ

=Δ
•

130
3

2 ]/)(exp[  (9) 

where 2.00 =P , 15.00 =M  and 1.00 =D  are the steady 
state values calculated in Dobrescu et al. (2007).   

Dobrescu et al. (2007) make an important change in the 
initial Brause model. They have introduced a new 
parameter T that signifies the initialization of a treatment 
(medication procedure) (Dobrescu et al., 2007). Sepsis 
treatment can be modeled by introducing an exogenous 
signal into the right hand term of (2): 

TMPPPP 321 )1( α−α−−α=
•

, 3,1 ,0 => iiα  (10) 

Medication is carried, with the help of the circulatory 
system. This induces a dead-time that has to be taken into 
account for when, the amount of active substance, 
required for combating infected cells, is decided. Also, 
the authors have taken into consideration the existence of 
a dead-time between the evolution of sepsis and the 
body’s immune response. The modified mathematical 
model is: 
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5. CARDIOVASCULAR SYSTEM STRUCTURE 

The anatomical structure of the cardio-vascular system 
is presented in Fig. 3. Due to the structure of the 
circulatory system, we have a time delay before the 
medication reaches a homogeneous concentration in the 
body. This dead time is put in evidence by the simplified 
mathematical sintetized by Minato et al. (see Minato et 
al., 1979; Iancu, 2000).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. The simplified structure of the cardiovascular 
system. 
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The right heart has an atrium (AR) and a ventricle (VR). It 
receives the blood from the body and pumps it in the lung. 
The left heart has an atrium (AL) and a ventricle (VL). It 
receives the blood from the lung and pumps it in the body.  
In Fig. 3 the notations have the next significances: 

 QL – represent the blood flow input in the left 
heart. 

 QIB - represent the blood flow input in the body.  

 QOB - represent the blood flow output in the body. 

 QR - represent the blood flow input in the right 
heart. 

 QIL - represent the blood flow input in the lung. 

 QOL - represent the blood flow output in the lung. 

Also, the blood flows Q [mls-1] between the different 
compartments are considered equals and constants. 

.ctQQQQQQQ OBIBLOLILR =======     (14) 

On suppose that the cardio-vascular system is working in 
steady state and we consider the supposition that all the 
involved blood volumes are constant. 

 WR [ml] - represent the blood volume in the right 
heart; 

 WL [ml] - represent the blood volume in the left 
heart; 

 Wlung [ml] - represent the blood volume in the lung; 
 Wbody [ml] - represent the blood volume in the 

body. 

We have modeled the injection of the pharmacological 
substance in a peripheral vein by the relation: 

   0)0(   ),()()(
=−= iii

i
i ctcQti

dt
tdcW   (15) 

where iW  represent the volume of the substance, )(tci  
represent the substance concentration at the injection level 
and iQ  is the blood flow which receive and transport the 
substance. Also: 
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where 
 iτ  [s] - represents the interval of injection 
 I [mg] – represents the quantity of substance in the 

unwashed solution. 

The equation which describes the transport from the 
injection place to the right heart is: 
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where bodyτ  represents the delay necessary for the 
transport of the injectable solution and 

)(  ),(  ),( tctctc bodyRL  represent respectively, the 

substance concentrations at the left heart, right heart and 
at body level. Similarly, the equations for the transport in 
the next compartments are: 

 for the lung: 
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tQctQc
dt
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W lungR

lung
lung −=  (18) 

 for the left heart: 
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 for the body: 
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From (15), (17), (18), (19) and (20) results: 
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where  

iii QWT /= ,    iRRi QWT /= ,    

QWT RR /= ,   QWT lunglung /= , 

QWT LL /= ,    QWT bodybody /=   

represent time constants. Using Laplace transformation 
(we suppose that the initial conditions are zero) it is 
possible to calculate the transfer function for each channel 
of process:  

 for the injection zone: 

              
1

/1
)(
)(

)(
+

==
sT
Q

si
sc

sH
i

ii
i   (26) 

 for the right heart: 

    )(
1

1)(
)1(

)( sc
sT

kesc
sTT
Tesc body

R

s
i

RRi

R
s

R
body

i

+
−

+
+

= −
−

τ
τ

 (27) 

 for the lung: 
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 for the left heart: 
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During the simulation it is possible to modify the value of 
concentration of the substance and time of injection. Also, 
we can choose physiological or pathological values for all 
the parameters of the cardiovascular system. So, it is 
possible to simulate the dilution of drugs administrated in 
the cardiovascular system. The results of simulation are 
presented in the next figures. 

In the following figures we have represented: 
 P(t) representing the pathogen influence (Fig. 7); 
 M(t) representing the macrophage action (Fig. 8); 
 D(t) representing the percentage of damaged cell 

tissue, which is destroyed in the fight between P  
and M (Fig. 9). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. The time evolution concentration at the right heart. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. The time evolution concentration at the left heart. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6. The time evolution concentration at the body level. 
 
A special situation occurs in intensive care units (ICUs), 
where most of the patients are not aware. Usually, sepsis 
represent the systemic inflammatory response syndrome 
(SIRS) associated with infection. 

The most critical aggravation of sepsis is the septic shock. 
In ICUs the septic shock is a very critical situation of the 
patient. The diagnosis of septic shock is still made too 
late, because at present there are no adequate tools to 
predict the progression of sepsis to septic shock (Seely 
and Christou, 2000).  

The advantage of the ICUs is the fact that medication can 
be fed constantly, in a controlled environment. In order to 
keep the concentration of active substance and control and 
avoid over-doses, we are proposing his use of a control 
structure based on the Smith predictor. 

6. THE STRUCTURE PROPOSED FOR SEPSIS 
CONTROL 

The control structure proposed by the authors takes into 
account dead times introduced by the cardiovascular 
system. Specifically, we propose that the mathematical 
model describing the sepsis process control is formed by 
the connection with the mathematical model of the 
cardiovascular system. The controller which will 
command the pump for the medication substance will be 
synthesized using Smith predictors. We therefore ensure a 
good behavior of the control system. The command 
required for the pump is anticipated ahead of time with a 
period equal with dead time. It also improves behavior in 
relation to disturbance. It is worth mentioning that in the 
synthesis of the control law, we must consider the 
ensuring of closed-loop stability. 

7. SENSITIVITY ANALYSIS 

From engineering practice is well known that a dynamic 
system did not respond in the same way to all external 
stimuli (command or disturbance). It is saying that the 
system is more sensitive to the command ui or disturbance 
ζj. Similar, altering one or more parameters from internal 
structure lead to a deviation from the undisturbed 
trajectory and the system is more sensitive to one altering 
given another. All these observations lead to the necessity 



 
 

     

 

of the system sensitivity analysis (SSA). Starting from 
these observations resulted from the engineering practice, 
two appearances of the system sensitivity analysis have 
been developed: 

 Direct sensitivity analysis (DSA) 
 Inverse sensitivity analysis (ISA). 

7.1 Direct sensitivity analysis (DSA) 

The aim of the DSA is to determine the influences of the 
initial state, command and parameter alterations on the 
time evolution of the system states and output. 
Conversely, the generating causes of the deviations of the 
state and output trajectories of the disturbed system from 
the undisturbed trajectories are determined through the 
ISA of the system, using the measurements of these 
deviations. Theoretical concepts presented below and 
which illustrates the principle of SSA are taken from 
speciality literature (Ungureanu, 1988; Porter and 
Crossley, 1972; Takamatsu et al., 1970). Ungureanu 
(1988) considered the following mathematical model of a 
dynamic system, given by the vectorial state equation: 

 ]),(),(),([)( ttptutxftx =&    (31) 

where x(t) is the state-vector, u(t) the command-vector, 
and p(t) is parameter-vector. The trajectory of the 
undisturbed state is the solution of the equation (31): 

 ]),(),(,[)( 0 ttptuxxtx =    (32) 

where x0 are the initial conditions. At the time moment t1, 
t0 < t1 < tf, where tf is the final time for the system 
evolution, appear step modifications of the command with 
Δu and/or of the parameters with Δp. The disturbed state 
trajectory in this case is (Ungureanu, 1988): 

          11     ],)(,)(),([)( ttptpututxxtx p ≥Δ+Δ+=  (33) 

where )(tx p  is the solution of the equation: 

              ],)(,)(),([)( tptpututxftx pp Δ+Δ+=&  (34) 

The deviation of the state trajectory from the nominal 
trajectory is given by the relation: 

  )()()( txtxtx p −=Δ   (35) 

Using the sensitivity matrices, defined by Ungureanu 
(Ungureanu, 1988), we can computed directly this 
deviation with the relations: 

        ptSutStx x
p

x
u Δ+Δ≅Δ )()()(   (36) 

7.2 Inverse sensitivity analysis (ISA) 

It can be defined the general sensitivity matrix as the 
matrix obtained joining the commands sensitivity 
matrices and parameters (Ungureanu, 1988), 

  qtStx x
q Δ=Δ )()(    (37) 

where we noted: Δq= [Δu Δp]T. Formally, using the 

relation (37), ISA problem is resumed to solving the 
equation: 
 ] ,[ ),()]([ 0

1
f

x
q ttttxtSq ∈Δ=Δ −   (38) 

It can be seen that ISA need to know the deviation of the 
trajectory of the real system from the nominal trajectory. 
In Ungureanu (1988) it is presented an algorithm for 
solving ISA in the case of continuous systems.  

The authors shall further propose a new version of the 
algorithm for calculating ISA in the discrete event systems 
(like as tumor growth).  

One possibility to solve the problem is based on 
minimisation of a criteria function with two variables. 
The first variable is the difference Δx, that is the real state 
deviation. The second variable is computed using relation 
(37) noted Δx*. Let it be τ the sampling period, suitable 
chosen. For the vectors Δx and Δx* obtained at step e, 
e=1,2,3....  we'll use the notations: 
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We'll choose for the scalar criteria J an expression: 
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where de represents an Euclidean distance between 
vectors Δxe- real deviations at the sampling moment eτ  

and respectively Δx*e - theoretically computed 
deviations, and τ−= /)( 0ttN f  represent the number of 
the samples. From (37) can be wrote: 
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We'll consider the general sensitivity matrix is: 
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The Euclidean distance between the two vectors is given 
by the relation: 
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and criteria (40) has the general expression: 
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The minimum condition regarding the components of the 
vector Δq can be analytically written with the relation: 
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)(

=
Δ∂
∂

q
J    (46) 

So, in the case of ISA it is starting from the measurement 
of the state trajectory and/or output trajectory deviation of 
the disturbed system from the ideal trajectories of an 
undisturbed model and it is looking to determine the 
causes which generate these deviations, implementing a 
diagnosis of the system.  

8. APPLICATION 

To illustrate sensitivity analysis and a possible application 
of this to medical diagnosis we used the simplified 
liniarized model represented by the equations (11, 12 and 
13). Be the following notations: 
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If it does not take into account the delay times, the 
sensitivity matrix with respect to parameter α1 is solution 
of the equation (Ungureanu, 1988): 
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Similarly we can calculate the other sensitivity matrices 
with respect to the parameters α2, β1, β2, β3, γ1, γ2 and γ3. 

In conclusion, using this method, it is possible to 
determine factors that stimulate or inhibit cell population 
growth. We can determine the sensitivity to treatment and 
we can adopt a correct therapeutic attitude. 
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