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Abstract: This paper presents aspects concerning the stable design of fuzzy control solutions for 
the position control of an electromagnetic actuated clutch. The mathematical modelling of the 
plant is first solved offering the plant models expressed as first principle nonlinear models, 
linearized models, dynamic Takagi-Sugeno fuzzy models and Tensor Product models derived 
from Linear Parameter-Varying models. The PI controllers are tuned by the Modulus Optimum 
method. The Takagi-Sugeno PI-fuzzy controllers are tuned on the basis of the modal equivalence 
principle which maps the parameters of the linear PI controllers onto the parameters of the fuzzy 
ones. The Takagi-Sugeno state feedback fuzzy controllers are designed by Parallel Distributed 
Compensation to obtain the state feedback gain matrices in the consequents of the rules. The 
stability of all fuzzy control systems is guaranteed in terms of deriving stability conditions 
expressed as Linear Matrix Inequalities (LMIs) and solving the LMIs. 

Keywords: Electromagnetic actuated clutch, stable fuzzy control, Takagi-Sugeno fuzzy models, 
Takagi-Sugeno PI-fuzzy controllers, Tensor Product models. 

 

1. INTRODUCTION 

The electromagnetic actuated clutch is an important 
system in the framework of automotive applications 
(Kiencke and Nielsen, 2005; Isemann, 2005). Very good 
control system performance indices should be ensured by 
the control systems of electromagnetic actuated clutches 
viewed as actuators in automotive control systems. Some 
current control solutions for such applications concern 
internal model control with two-degree-of-freedom (2 
DOF) PID controllers (Zhang et al., 2006), model 
predictive control (Di Cairano et al., 2007a), and one-
degree-of-freedom (1 DOF) and 2 DOF fuzzy control 
(Dragoş et al., 2010). 

This paper is developed starting with the previous results 
on the nonlinear and linearized models of the controlled 
plant and on the 1 DOF Takagi-Sugeno PI-fuzzy 
controllers discussed in (Dragoş et al., 2010). The stable 
design of these fuzzy control systems is suggested. Using 
the Tensor Product (TP) models derived from Linear 
Parameter-Varying (LPV) models proposed in (Precup et 
al., 2010) this paper offers new dynamic Takagi-Sugeno 
fuzzy models of the controlled plant on the basis of the 

modal equivalence principle. Original Takagi-Sugeno 
state feedback fuzzy controllers are next designed. The 
stable design of all fuzzy control systems is ensured by 
the combination between the Parallel Distributed 
Compensation (PDC) and the stability conditions 
expressed as Linear Matrix Inequalities (LMIs) which are 
popular in the fuzzy control systems design (Tanaka and 
Wang, 2001; Lam, 2009; Sala, 2009; Lendek et al., 2010). 

This paper is organized as follows. The mathematical 
modelling of the controlled plant is presented in the next 
section. Section 3 is dedicated to the stable design of the 
fuzzy controllers. A sample of digital simulation results 
for a case study concerning the position control of an 
electromagnetic actuated clutch is presented in Section 4. 
The conclusions are pointed out in Section 5. 

2. MATHEMATICAL MODELLING OF 
CONTROLLED PLANT 

The state-space mathematical model (MM) of the 
electromagnetic actuated clutch built around a 
magnetically mass spring damper system is (Di Cairano et 



 
 

     

 

al., 2007b; Dragoş et al., 2009; Dragoş, 2009a; Dragoş, 
2009b; Lazăr et al., 2009; Dragoş et al., 2010) 
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where: xx =1  – the mass position, xx &=2  – the mass 
speed, ix =3  – the current, V – the control signal, z – the 
controlled output, k  – the stiffness of the spring, c – the 
coefficient of the damper, R  – the resistance of the 
resistive circuit subjected to magnetic flux variations 
according to Faraday’s law, ak , bk  – the constants which 
are defined in the relation between the magnetic flux and 
the current, and t – the independent (continuous) time 
variable. The parameter values corresponding to the state-
space MM presented in (1), which plays the role of 
controlled plant, are illustrated in (Dragoş, 2009a; Dragoş, 
2009b; Lazăr et al., 2009). 

The linearization of the MM in (1) around the ten 
operating points 
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leads to ten linearized state-space MMs of the controlled 
plant with the general expression 
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However considering separately the coordinates of the 
operating points in (2) this leads to a maximum of 1000 

linearized state-space MMS of the controlled plant of type 
(3). 

Using the following notations for the variations of the 
variables with respect to the coordinates of the operating 
points 

 zyVu Δ=Δ=   , , (4) 

the state-space MM in (3) will obtain the well accepted 
form 
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where u is the control signal and y is the controlled 
output, i.e. the mass position. 

The transfer functions (t.f.s) of the linearized MMs of the 
controlled plant in (3) or (5) are 
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where the zero initial conditions are considered, and the 
three time constants fulfil the condition 

 321 TTT >> . (7) 

The dynamic Takagi-Sugeno fuzzy models of the 
controlled plant are based on the three input variables 
which set the coordinates of the operating points in (2), x1, 
x3 and V (which can be replaced by u according to (4)). 
All membership functions of the input linguistic terms are 
defined such that their modal values are the coordinates of 
a subset of the operating points in (2). Selecting o 
operating points in (2) the complete rule base of this fuzzy 
model contains 3onR =  rules, R

i niR ,1  , = . The 
consequents of the rules correspond to the linearized 
state-space MMs defined in (5). The modal equivalence 
principle (Galichet and Foulloy, 1995) guarantees the 
equivalence between the fuzzy models and the nonlinear 
state-space ones. 

The linguistic terms lxT ,1
, ol ,1= , mxT ,3

, om ,1= , and 

nVT , , on ,1= , are defined for x1, x3 and V, respectively 
such that to respect the modal equivalence principle. Fig. 
1 exemplifies the membership functions of the linguistic 
terms afferent to the input variable x1 for 3=o  operating 
points, where 1,10x , 2,10x  and 3,10x  are the modal values of 
the input variable x1. 

The complete rule base of the continuous-time dynamic 
T-S fuzzy model is 
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Fig. 1. Membership functions of the linguistic terms 
afferent to the input variable x1 for 3=o . 

where the matrices are expressed in (3). 

The discretization of the nR models in the consequents of 
the Takagi-Sugeno fuzzy model (8) accepting the zero-
order hold and setting the value of the sampling period 
leads to the following rule base of the discrete-time 
dynamic Takagi-Sugeno fuzzy model of the controlled 
plant: 
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where k is the index of the current sampling interval. 

All Takagi-Sugeno fuzzy models of the plant and all 
Takagi-Sugeno fuzzy models of the PI-fuzzy controllers 
and of the state-feedback Takagi-Sugeno fuzzy controllers 
as well use the SUM and PROD operators in the inference 
engine and the weighted average defuzzification method. 

Accepting the bounded parameter vector p which is the 
following particular scalar: 

 Rxp ∈== ][][ 31p , (10) 

the state-space MM defined in (1) is expressed as the 
following LPV state-space MM: 
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where 

 RVzy ∈== u  , , (12) 

and the matrices are expressed as 
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where 3I  is the third order identity matrix. 

Introducing the general parameter-varying system matrix 
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the LPV MM presented in (11) is transformed into the 
following synthesized form: 
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Since the matrices C and D are constant with respect to p 
the following simpler expression of the matrix )(pS  in 
(14) will be used as follows: 

 43)()(()( ×∈= RpBpApS . (16) 

Therefore the following LPV MM is derived: 
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The goal of the TP-based model transformation is to 
transform the LPV state-space model of the controlled 
plant expressed in (17) into the following parameter-
varying combination of Linear Time-Invariant (LTI) 
system matrices ][ iii BAS =  called vertex systems 
(Baranyi, 2004; Baranyi et al., 2006; Matszangosz et al., 
2008; Nagy et al., 2008; Baranyi et al., 2009): 
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where the row matrix )( nn pw  contains a bounded 
variable and its continuous weighting functions, N is the 
tensor’s dimension, and S is the (N+2)-dimensional 
coefficient tensor. 

The TP model expressed in (18) is convex because the 
weighting functions fulfil certain conditions. 

The TP Tool (Nagy et al., 2007) is employed transform 
the TP model defined in (18) into different polytopic 
forms which depend on the number of singular values and 
the number of shapes of weighting functions. The 
following polytopic form results (for 2=I  in (18)) when 
the maximum singular values are kept the normal 
weighting functions presented in Fig. 2 are used: 
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Fig. 2. Weighting functions of the TP model expressed in 
(18). 

Digital simulation results concerning the behaviour of the 
TP model expressed in (10) are given in (Precup et al., 
2010). 

It should be pointed out that the models presented in this 
section can be applied with no major difficulties to other 
controlled plants and controller structures (Škrjanc et al., 
2004; Johanyák and Kovács, 2006; Hermann, 2007; 
Kovács and Paláncz, 2007; Bellomo et al., 2008; Mok and 
Chan, 2008; Ferreira and Ruano, 2009; Harmati and 
Skrzypczyk, 2009; Vaščák, 2009; Haber et al., 2010; Ahn 
and Anh, 2010; Kurnaz et al., 2010). 

3. STABLE DESIGN OF FUZZY CONTROLLERS 

The design starts with the Takagi-Sugeno PI-fuzzy 
controller which is based on the fuzzy control system 
structure presented, where r is the reference input, e is the 
control error, d is the disturbance input, y is the controlled 
output, P is the controlled plant and the nonlinear block 
FB is the fuzzy block. 

A low-cost design of the Takagi-Sugeno PI-fuzzy 
controller is based on the t.f.s P(s) expressed in (6). The 
continuous-time PI controllers with the t.f. C(s): 
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with the controller gain kc and the integral time constant 
Tc, can ensure good control system performance indices 

when controlling P(s) in (6) if the Modulus Optimum 
method is used. The tuning equations specific to the 
Modulus Optimum method applied to (6) are 
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The continuous PI controller with the t.f. defined in (20) 
is discretized using Tustin’s method after setting the value 
of the sampling period Ts. Five quasi-continuous digital 
PI controllers with the following recurrent equations are 
obtained when a low-cost fuzzy controller: 
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where }8,7,6,5,3{∈i  (Dragoş et al., 2010) is the rule 
index which corresponds also to the index of the 
operating points defined in (2), keΔ  is the increment of 
control error, and i

kuΔ  is the increment of control signal. 
The expressions of the parameters in the recurrent 
equations (22) are 
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and the parameter 10  , <γ<γ , is introduced to reduce 
the overshoot. 

The fuzzification of the two input variables of the block 
FB, ke  and keΔ , is performed in terms of three linguistic 
terms with the membership functions presented in Fig. 4 
which shows that 3=o  according to the notation 
accepted in the previous section. 

The tuning equations of this Takagi-Sugeno PI-fuzzy 
controller resulted from the modal equivalence principle 
are (Dragoş et al., 2010) 

 0002.0)/(  ,01.0 =α=== Δ ee
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The rule base of the block FB is 
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Fig. 3. Structure of fuzzy control system with Takagi-Sugeno PI-fuzzy controller. 



 
 

     

 

 
Fig. 4. Membership functions of the linguistic terms 
afferent to the input variables of the block FB. 

where }P,ZE,N{LTDE ,LTE ∈i
m

i
l  are the linguistic 

terms of the two input linguistic variables. 

The stable design of the Takagi-Sugeno PI-fuzzy 
controller requires all 9322 === onR  local quasi-
continuous digital PI controllers resulted from (2) and (6). 
It ensures the calculation of the parameters in the rule 
consequents (22) such that to guarantee the global 
stability of the fuzzy control system. Accepting that the 
discrete-time state-space MMs in the consequents of the 
rules are those presented in (9): 
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with the general form of the state vector kx  

 T
nPk xxx ]...[ 21=x , (27) 

where nP is the system order, 3=nP , and T indicates the 
matrix transposition, the following three additional state 
variables are defined such that to transfer the dynamics of 
the two linear blocks inside the Takagi-Sugeno PI-fuzzy 
controller to the (extended) controlled plant: 
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Using the equations (26) and (28), the fuzzy control 
system structure (Fig. 3) and assuming that const=r  the 
following extended state-space MM of the controlled 
plant is derived: 
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where 
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The dynamic Takagi-Sugeno fuzzy model of the extended 
controlled plant is 
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where ol ,1=  and om ,1= . This MM is important as it 
allows the convenient design of the remaining Takagi-
Sugeno fuzzy controller without dynamics i.e. the block 
FB. 

Using the notations defined in (28) and the fuzzy control 
system structure defined in Fig. 3 the block FB of the 
Takagi-Sugeno PI-fuzzy controller can be expressed as a 
Takagi-Sugeno state feedback fuzzy controller with the 
following rule base: 
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The PDC framework (Tanaka and Wang, 2001) justifies 
the separate design of the local state feedback controllers 
in the rule consequents presented in (32). The following 
normalized firing strengths (membership functions of 
fuzzy sets) hi are defined to enable the formulation of the 
LMIs: 
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where 

 },{  ,2  ,][ kk
T

kk eevnvee Δ∈=Δ=z , (34) 

and the notations for the linguistic terms defined in 
Section 2 are kept. 

The equilibrium point of the fuzzy control system is 
globally asymptotically stable if there exists a common 
positive definite matrix X and the matrices Ri ni ,1  , =M , 
such that the following LMIs are fulfilled: 
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and 

 R
Tii

nPii niqp ,1  ,]0[ ,1
1 === − 0XMK . (36) 

Concluding, the parameters in the consequents of the 
rules of the Takagi-Sugeno PI-fuzzy controllers are 
determined in terms of obtaining the state feedback gain 
matrices iK , Rni ,1= , in (36) such that to solve the LMIs 
(35) and also to fulfil equality-type constraints. These 
equality-type constraints in (36) make these PI-fuzzy 
controllers act like Takagi-Sugeno partial state feedback 
fuzzy controllers. This transformation guarantees the 
global stability of the fuzzy control systems. 

The design of the discrete-time Takagi-Sugeno state 
feedback fuzzy controllers for the controlled plant 
modelled in the previous section is based on the same 
equations (35) and (36), but the consequents of the rules 
of the fuzzy models of the controlled plant are those 
presented in (9). Therefore the system order is 3 instead 
of 6 as for the Takagi-Sugeno PI-fuzzy controllers. In 
addition, no inequality-type constraints are imposed in 
(36). 

The continuous-time Takagi-Sugeno state feedback fuzzy 
controller is characterized by the complete rule base 
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The equilibrium point of this fuzzy control system is 
globally asymptotically stable if there exists a common 
positive definite matrix X and the matrices Ri ni ,1  , =M , 
such that the following LMIs are fulfilled (Tanaka and 
Wang, 2001): 
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The state feedback gain matrices iK , Rni ,1= , are next 
calculated as follows: 

 Rii ni ,1  ,1 == −XMK . (39) 

The results presented in this section can be applied to the 
design of Takagi-Sugeno fuzzy controllers on the basis of 
the TP models. The advantage of such design concerns 
the reduced numbers of local models in the conclusions if 
the TP models are viewed as Takagi-Sugeno fuzzy 
models. The polytopic models derived with this regard 
can be used in the controller design. The design controller 
design is convenient because it can be supported by the 
manipulation of the convex hulls beside the manipulation 
of the LMIs. 

4. A SAMPLE OF DIGITAL SIMULATION RESULTS 

The fuzzy control system with the Takagi-Sugeno PI-
fuzzy controller characterized by (24) and (25) was tested 
with respect to several step modifications of r. A sample 
of digital simulation results is presented in Fig. 5. 

 
Fig. 5. Digital simulation results of fuzzy control system 
with Takagi-Sugeno PI-fuzzy controller. 



 
 

     

 

5. CONCLUSIONS 

The paper has suggested the stable design of several new 
Takagi-Sugeno fuzzy controllers for or the position 
control of an electromagnetic actuated clutch. They are 
based on different mathematical models of the controlled 
plant. 

The limitation of our new approach is related to the 
numerical problems associated to solving the stability 
conditions i.e. with the determination of the common 
positive matrix to fulfil certain inequalities (LMIs) and 
eventually equalities as well. It is compensated by the 
strength of the plant models and of the fuzzy controllers 
when coping with large classes of nonlinear plants. 

The future research will be focused on real-time 
experimental tests in several conditions which involve 
various reference input and disturbance input 
modifications. The low-cost design and implementation 
of the controllers will be aimed. 
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