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Abstract: This paper presents aspects concerning the stable design of fuzzy control solutions for
the position control of an electromagnetic actuated clutch. The mathematical modelling of the
plant is first solved offering the plant models expressed as first principle nonlinear models,
linearized models, dynamic Takagi-Sugeno fuzzy models and Tensor Product models derived
from Linear Parameter-Varying models. The PI controllers are tuned by the Modulus Optimum
method. The Takagi-Sugeno PI-fuzzy controllers are tuned on the basis of the modal equivalence
principle which maps the parameters of the linear PI controllers onto the parameters of the fuzzy
ones. The Takagi-Sugeno state feedback fuzzy controllers are designed by Parallel Distributed
Compensation to obtain the state feedback gain matrices in the consequents of the rules. The
stability of all fuzzy control systems is guaranteed in terms of deriving stability conditions
expressed as Linear Matrix Inequalities (LMIs) and solving the LMIs.

Keywords: Electromagnetic actuated clutch, stable fuzzy control, Takagi-Sugeno fuzzy models,

Takagi-Sugeno PI-fuzzy controllers, Tensor Product models.

1. INTRODUCTION

The electromagnetic actuated clutch is an important
system in the framework of automotive applications
(Kiencke and Nielsen, 2005; Isemann, 2005). Very good
control system performance indices should be ensured by
the control systems of electromagnetic actuated clutches
viewed as actuators in automotive control systems. Some
current control solutions for such applications concern
internal model control with two-degree-of-freedom (2
DOF) PID controllers (Zhang et al., 2006), model
predictive control (Di Cairano et al., 2007a), and one-
degree-of-freedom (1 DOF) and 2 DOF fuzzy control
(Dragos et al., 2010).

This paper is developed starting with the previous results
on the nonlinear and linearized models of the controlled
plant and on the 1 DOF Takagi-Sugeno PI-fuzzy
controllers discussed in (Dragos et al., 2010). The stable
design of these fuzzy control systems is suggested. Using
the Tensor Product (TP) models derived from Linear
Parameter-Varying (LPV) models proposed in (Precup et
al., 2010) this paper offers new dynamic Takagi-Sugeno
fuzzy models of the controlled plant on the basis of the

modal equivalence principle. Original Takagi-Sugeno
state feedback fuzzy controllers are next designed. The
stable design of all fuzzy control systems is ensured by
the combination between the Parallel Distributed
Compensation (PDC) and the stability conditions
expressed as Linear Matrix Inequalities (LMIs) which are
popular in the fuzzy control systems design (Tanaka and
Wang, 2001; Lam, 2009; Sala, 2009; Lendek et al., 2010).

This paper is organized as follows. The mathematical
modelling of the controlled plant is presented in the next
section. Section 3 is dedicated to the stable design of the
fuzzy controllers. A sample of digital simulation results
for a case study concerning the position control of an
electromagnetic actuated clutch is presented in Section 4.
The conclusions are pointed out in Section 5.

2. MATHEMATICAL MODELLING OF

CONTROLLED PLANT
The state-space mathematical model (MM) of the
electromagnetic  actuated clutch built around a

magnetically mass spring damper system is (Di Cairano et



al., 2007b; Dragos et al., 2009; Dragos, 2009a; Dragos,
2009b; Lazar et al., 2009; Dragos et al., 2010)

)-Cl (t) = x2 (t)’

. __& _i ka 2
X, () = - x, (1) e (1) + e x5 (0, W

Rk k
(=2 (1) + ki 500+ V),

a

a

Z(t) = xl (t)a

where: x, =x — the mass position, x, =% — the mass
speed, X, =i — the current, V' — the control signal, z — the

controlled output, £ — the stiffness of the spring, ¢ — the
coefficient of the damper, R — the resistance of the
resistive circuit subjected to magnetic flux variations
according to Faraday’s law, k,, k, — the constants which

are defined in the relation between the magnetic flux and
the current, and ¢ — the independent (continuous) time
variable. The parameter values corresponding to the state-
space MM presented in (1), which plays the role of
controlled plant, are illustrated in (Dragos, 2009a; Dragos,
2009b; Lazar et al., 2009).

The linearization of the MM in (1) around the ten
operating points

1i{r, =0.0033, x,=1, ¥, =12},

2:0x, 200027, x, =2, V, =24},
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4:ix, =00021, x,=4, V,=48),
5:ix,=0.002, x,=5  V,=6l, 2)
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leads to ten linearized state-space MMs of the controlled
plant with the general expression

X(£)= A x(¢) + b AV (1),

Az(1) = ¢"x(0), 3)
x=[x,=x x,=x% x,=A]",
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However considering separately the coordinates of the
operating points in (2) this leads to a maximum of 1000

linearized state-space MMS of the controlled plant of type
3.

Using the following notations for the variations of the
variables with respect to the coordinates of the operating
points

u=AV, y=Az, 4)

the state-space MM in (3) will obtain the well accepted
form

X(1) = A x(t)+bu(t),
y(0) =" x(1),

where u is the control signal and y is the controlled
output, i.e. the mass position.

)

The transfer functions (t.f.s) of the linearized MMs of the
controlled plant in (3) or (5) are

P(s) = V(s) _ kp , (6)
u(s) (1+s7)A+sT,)(1+sT3)

where the zero initial conditions are considered, and the
three time constants fulfil the condition

T, >T, >T,. @)

The dynamic Takagi-Sugeno fuzzy models of the
controlled plant are based on the three input variables
which set the coordinates of the operating points in (2), xi,
x3 and V (which can be replaced by u according to (4)).
All membership functions of the input linguistic terms are
defined such that their modal values are the coordinates of
a subset of the operating points in (2). Selecting o
operating points in (2) the complete rule base of this fuzzy
model contains R,i=1n,. The

consequents of the rules correspond to the linearized
state-space MMs defined in (5). The modal equivalence
principle (Galichet and Foulloy, 1995) guarantees the
equivalence between the fuzzy models and the nonlinear
state-space ones.

3
n, =0 rtules,

The linguistic terms 7_,, /=1,0, T, ,, m=1,0, and

X3
T,,, n :17;, are defined for x;, x3 and V, respectively

such that to respect the modal equivalence principle. Fig.
1 exemplifies the membership functions of the linguistic
terms afferent to the input variable x; for o =3 operating
points, where X101 X0 and X5 are the modal values of

the input variable x;.
The complete rule base of the continuous-time dynamic
T-S fuzzy model is
R':1Fx(t) IS T) , AND x,(¢) IS T] , AND
X0 = AXO) +bu() ®)
yoy=c¢x@) "

Vi) 1S T}, THEN{
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Fig. 1. Membership functions of the linguistic terms
afferent to the input variable x; for 0 =3.

where the matrices are expressed in (3).

The discretization of the n models in the consequents of
the Takagi-Sugeno fuzzy model (8) accepting the zero-
order hold and setting the value of the sampling period
leads to the following rule base of the discrete-time
dynamic Takagi-Sugeno fuzzy model of the controlled
plant:

R :IFx, IST;, AND x;, IS T, A AND
)

X, =A X+ bd,iuk

T s L=1L1,,
Ve =€ Xy

v, IS T}, THEN{

where £ is the index of the current sampling interval.

All Takagi-Sugeno fuzzy models of the plant and all
Takagi-Sugeno fuzzy models of the PI-fuzzy controllers
and of the state-feedback Takagi-Sugeno fuzzy controllers
as well use the SUM and PROD operators in the inference
engine and the weighted average defuzzification method.

Accepting the bounded parameter vector p which is the
following particular scalar:

(10)

the state-space MM defined in (1) is expressed as the
following LPV state-space MM:

p=[p]=[x;]eR,

X() = A(p)x+B(p)u(?),

(an
y(#) = C(p)x +D(p)u(?),
where
y=z,u=VeR, (12)
and the matrices are expressed as
0 1 0
A(p)=|-k/m —c/m k, p, [(mk})|,
0 p 'k, —Rk,/(2k,)
’ (13)
B(p) = 0o |,
ky /(2k,)

C(p)=C=1;,D(p)=D=[0],

where 1, is the third order identity matrix.

Introducing the general parameter-varying system matrix

(14)

So) :[A(m B(p)) _ pi

C(p) D(p)

the LPV MM presented in (11) is transformed into the
following synthesized form:

X(2) x(1)

y(1) u(r)
Since the matrices C and D are constant with respect to p
the following simpler expression of the matrix S(p) in

(14) will be used as follows:

(15)

S(p)=(A(p) B(p)eR™. (16)
Therefore the following LPV MM is derived:
. x(2)
X(1) = S(p)(u(l‘)} (17)

y@)=Cx(t)+Du(r).

The goal of the TP-based model transformation is to
transform the LPV state-space model of the controlled
plant expressed in (17) into the following parameter-
varying combination of Linear Time-Invariant (LTI)
system matrices S, =[A, B,] called vertex systems

(Baranyi, 2004; Baranyi et al., 2006; Matszangosz et al.,
2008; Nagy et al., 2008; Baranyi et al., 2009):

K0 =5@w, (pn)["(t)J :

u(?)
' x()
2 (Ms,-(u(t)}

y(0)=Cx(@®)+Du(),

(18)

where the row matrix w, (p,) contains a bounded

variable and its continuous weighting functions, N is the
tensor’s dimension, and S is the (N+2)-dimensional
coefficient tensor.

The TP model expressed in (18) is convex because the
weighting functions fulfil certain conditions.

The TP Tool (Nagy et al., 2007) is employed transform
the TP model defined in (18) into different polytopic
forms which depend on the number of singular values and
the number of shapes of weighting functions. The
following polytopic form results (for / =2 in (18)) when
the maximum singular values are kept the normal
weighting functions presented in Fig. 2 are used:

5= 3w, O)[A,x(0)+ B,u()]

i=1

y(t)=Cx(t)+Du(r).

(19)
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Fig. 2. Weighting functions of the TP model expressed in
(18).

Digital simulation results concerning the behaviour of the
TP model expressed in (10) are given in (Precup et al.,
2010).

It should be pointed out that the models presented in this
section can be applied with no major difficulties to other
controlled plants and controller structures (Skrjanc et al.,
2004; Johanyak and Kovacs, 2006; Hermann, 2007;
Kovacs and Palancz, 2007; Bellomo et al., 2008; Mok and
Chan, 2008; Ferreira and Ruano, 2009; Harmati and
Skrzypczyk, 2009; Vascak, 2009; Haber et al., 2010; Ahn
and Anh, 2010; Kurnaz et al., 2010).

3. STABLE DESIGN OF FUZZY CONTROLLERS

The design starts with the Takagi-Sugeno PI-fuzzy
controller which is based on the fuzzy control system
structure presented, where r is the reference input, e is the
control error, d is the disturbance input, y is the controlled
output, P is the controlled plant and the nonlinear block
FB is the fuzzy block.

A low-cost design of the Takagi-Sugeno PI-fuzzy
controller is based on the t.f.s P(s) expressed in (6). The
continuous-time PI controllers with the t.f. C(s):

Cs)=e ety =koae L,
s sT; (20)
T.=T, k =

c >

NS

with the controller gain k. and the integral time constant
T., can ensure good control system performance indices

when controlling P(s) in (6) if the Modulus Optimum
method is used. The tuning equations specific to the
Modulus Optimum method applied to (6) are

c = 7—1’ kc = 1 : (21)
2k, (T, +T,)

The continuous PI controller with the t.f. defined in (20)

is discretized using Tustin’s method after setting the value

of the sampling period 7. Five quasi-continuous digital

PI controllers with the following recurrent equations are

obtained when a low-cost fuzzy controller:

Au;, =y(k;Ae, +ak,e,)=

- piek—l - q[Aek > (22)

p'=—vokp, q' =—y(k; +okp),

where ie{3,5,6,7,8} (Dragos et al., 2010) is the rule
index which corresponds also to the index of the
operating points defined in (2), Ae, is the increment of

control error, and Aw, is the increment of control signal.

The expressions of the parameters in the recurrent
equations (22) are

keI, kg

Tk

) ) T )
ki =kl.(1-—>),k; = , (23)

2T
and the parameter y, 0 <y <1, is introduced to reduce
the overshoot.
The fuzzification of the two input variables of the block
FB, ¢, and Ae, , is performed in terms of three linguistic

terms with the membership functions presented in Fig. 4
which shows that o =3 according to the notation
accepted in the previous section.

The tuning equations of this Takagi-Sugeno PI-fuzzy
controller resulted from the modal equivalence principle
are (Dragos et al., 2010)

B, =0.01, B, =(k./k!)B, =aB, =0.0002. (24)

The rule base of the block FB is

R':IFe, IS LTE! AND Ae, IS LTDE/,

THEN Au, = Au!, i =15,

(25)
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Fig. 3. Structure of fuzzy control system with Takagi-Sugeno PI-fuzzy controller.



Fig. 4. Membership functions of the linguistic terms
afferent to the input variables of the block FB.

where LTE),LTDE! € {N,ZE,P} are the linguistic
terms of the two input linguistic variables.

The stable design of the Takagi-Sugeno Pl-fuzzy
controller requires all 5, =0°>=3=9 local quasi-

continuous digital PI controllers resulted from (2) and (6).
It ensures the calculation of the parameters in the rule
consequents (22) such that to guarantee the global
stability of the fuzzy control system. Accepting that the
discrete-time state-space MMs in the consequents of the
rules are those presented in (9):

X = Ay X, +b, uy,

(26)
Vi =€ X, =1y,
with the general form of the state vector x,
x, =[x, x, x,p1" 27)

where nP is the system order, nP =3, and T indicates the
matrix transposition, the following three additional state
variables are defined such that to transfer the dynamics of
the two linear blocks inside the Takagi-Sugeno PI-fuzzy
controller to the (extended) controlled plant:

Xppirk = Ug-1>

(28)

Xopiok = €ro1>

X,piy = Aey.

Using the equations (26) and (28), the fuzzy control
system structure (Fig. 3) and assuming that » = const the
following extended state-space MM of the controlled
plant is derived:

Xppe = AdE,iXE,k +b gy,

(29)

T .
Vi =€ Xppo i=Lng,

where

XE,k:[Xz Xopeik  Xups2k an+3,k]T>
A, b, 00
OnP,nP 1 0 0 (30)
A = 0 0 1 1f
1.nP
_ciT(Ad,i _InP) _cirbd,i 00
de,i :[bz;,i 00 _cind,i]T'

The dynamic Takagi-Sugeno fuzzy model of the extended
controlled plant is

R :IF € = Xpars T Xpias IS LTE; AND
. 31
Ae, =x,p,,, IS LTDE, ey

=AuXp, tbgu,

T
Vi =€ Xpy

s lzlaan

X
THEN { E k+1

where /=1,0 and m=1,0. This MM is important as it

allows the convenient design of the remaining Takagi-
Sugeno fuzzy controller without dynamics i.e. the block
FB.

Using the notations defined in (28) and the fuzzy control
system structure defined in Fig. 3 the block FB of the
Takagi-Sugeno PI-fuzzy controller can be expressed as a
Takagi-Sugeno state feedback fuzzy controller with the
following rule base:

R :IF € =X,poop T Xpay IS LTE; AND
Ae, =X,p.;, IS LTDE!,
THEN Au, =r, —-K X, , i=1n,.

(32)

The PDC framework (Tanaka and Wang, 2001) justifies
the separate design of the local state feedback controllers
in the rule consequents presented in (32). The following
normalized firing strengths (membership functions of
fuzzy sets) h; are defined to enable the formulation of the
LMIs:

h(2) = w (D) [ ()

(33)
w(@) =[]T. @), i=1Ln,,
a=l1
where
z=[e, Ae]’, nv=2,vele,Ae}, (34)

and the notations for the linguistic terms defined in
Section 2 are kept.

The equilibrium point of the fuzzy control system is
globally asymptotically stable if there exists a common
positive definite matrix X and the matrices M, i =1,n, ,

such that the following LMIs are fulfilled:



X X(AdE,f)T _(M[)T(de,i)T
AdE,iX - de,iMi X

X
|:(AdE,iX+AdE,jX_de,iMj _de,jMi)/z
V1<i< j<ng, suchthat #,Nh, +J,

and

KizMiX_lz[Ol,nP 0 p' ‘]i]rsizlank' (36)

Concluding, the parameters in the consequents of the
rules of the Takagi-Sugeno PI-fuzzy controllers are
determined in terms of obtaining the state feedback gain

matrices K, i = m , in (36) such that to solve the LMIs

(35) and also to fulfil equality-type constraints. These
equality-type constraints in (36) make these PI-fuzzy
controllers act like Takagi-Sugeno partial state feedback
fuzzy controllers. This transformation guarantees the
global stability of the fuzzy control systems.

The design of the discrete-time Takagi-Sugeno state
feedback fuzzy controllers for the controlled plant
modelled in the previous section is based on the same
equations (35) and (36), but the consequents of the rules
of the fuzzy models of the controlled plant are those
presented in (9). Therefore the system order is 3 instead
of 6 as for the Takagi-Sugeno PI-fuzzy controllers. In
addition, no inequality-type constraints are imposed in
(36).

The continuous-time Takagi-Sugeno state feedback fuzzy
controller is characterized by the complete rule base

R':1Fx,(t) IS T! , AND x,(r) IS T\, AND a7

V(t) IS T;, THEN u, =1, —-Kx,, i =17,

The equilibrium point of this fuzzy control system is
globally asymptotically stable if there exists a common

positive definite matrix X and the matrices M, i =1,n, ,

such that the following LMIs are fulfilled (Tanaka and
Wang, 2001):

-X(A)" -AX+M,))" (b)" +
bM,; >0,i=1,n,,

T T
-X(A) -AX-X(A)) -A X+
(M) (b)" +b,M, +(M,) (b)) +
b M, >0, VI<i<j<n,,
such that h, Nh; #D.

(3%)

The state feedback gain matrices K,, i=1,n, , are next

calculated as follows:

K, =MX", i=ln,. (39)

[(AX+A X-b, M, -b, M,)/2]

>0,i=1n,,

! S0 (35)

X >

The results presented in this section can be applied to the
design of Takagi-Sugeno fuzzy controllers on the basis of
the TP models. The advantage of such design concerns
the reduced numbers of local models in the conclusions if
the TP models are viewed as Takagi-Sugeno fuzzy
models. The polytopic models derived with this regard
can be used in the controller design. The design controller
design is convenient because it can be supported by the
manipulation of the convex hulls beside the manipulation
of the LMIs.

4. A SAMPLE OF DIGITAL SIMULATION RESULTS

The fuzzy control system with the Takagi-Sugeno PI-
fuzzy controller characterized by (24) and (25) was tested
with respect to several step modifications of ». A sample
of digital simulation results is presented in Fig. 5.
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Fig. 5. Digital simulation results of fuzzy control system
with Takagi-Sugeno PI-fuzzy controller.



5. CONCLUSIONS

The paper has suggested the stable design of several new
Takagi-Sugeno fuzzy controllers for or the position
control of an electromagnetic actuated clutch. They are
based on different mathematical models of the controlled
plant.

The limitation of our new approach is related to the
numerical problems associated to solving the stability
conditions i.e. with the determination of the common
positive matrix to fulfil certain inequalities (LMIs) and
eventually equalities as well. It is compensated by the
strength of the plant models and of the fuzzy controllers
when coping with large classes of nonlinear plants.

The future research will be focused on real-time
experimental tests in several conditions which involve
various reference input and disturbance input
modifications. The low-cost design and implementation
of the controllers will be aimed.
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