
     

Designing a Queue Events System for road traffic simulator 
 

Camelia Avram*, Adina Morariu*, Honoriu Vălean*, Adina Aştilean* 
 

*Technical University of Cluj Napoca, Romania  
(e-mail:{camelia.avram, adina.pop, honoriu.valean, adina.astilean}@aut.utcluj.ro) 

 

Abstract: The urban traffic is frequently perturbed by congestions, followed by usual delays, 
accidents and road closures that cause supplementary delays. It is important to use intelligent 
systems for traffic simulation, routing strategies and scheduling techniques in order to achieve an 
optimal usage of resources. Scheduling message queues has strong similarities with algorithms 
used for giving different service rates to flows within network routers. In this paper a message 
scheduler that uses time based credit scheduling is proposed, in which resources are partitioned 
among messages solvers by allocating credits. Various aspects of the overall system are 
investigated in particular in relation to throughput, delay, scalability with processors and 
performance isolation. 
Keywords: computer simulation, concurrent programming, distributed control, communication 
protocols, computer communication networks. 

 

1. INTRODUCTION 

Nowadays researches in many domains depend on 
software simulations to model various processes or 
hypothetical scenarios that often cannot be satisfactorily 
expressed theoretically nor easily reproduced and 
observed empirically. Based on system identification an 
optimal simulation models are derived and implemented 
as distributed application (depending on the type of the 
process large scale architecture are taken into account). 
Depending on circumstances the time or event driven 
simulation is adopted. The event processing involves 
tasks and messages exchange (producing, handling and 
erasing) that imply choosing different scheduling 
techniques in order to achieve an optimal usage of 
resources. 

Traffic congestion management was recognized as a 
major problem in modern urban areas, since it has caused 
much frustration and loss of people’s time. Traffic 
congestion has been increasing worldwide as a result of 
increased population growth and changes in population 
density. Congestion reduces efficiency of transportation 
infrastructure and increase travel time, air pollution, and 
fuel consumption. 

In this paper the authors propose a distributed architecture 
used to simulate large scale systems using virtual 
machines and modern communication techniques and 
tasks scheduling. Building discrete event simulators 
leverage modern virtual machines to achieve performance 
and quality of services.  

Virtual machine-based simulation provides the 
transparency of the kernel based approach with the 
performance of a library based approach, using language-
based techniques, but within a standard language and its 
runtime Barr et al. (2004). 

The urban traffic is frequently perturbed by congestions, 
followed by usual delays, accidents and road closures that 
cause supplementary delays. The architecture of Urban 
Traffic Advisory System (UDAS) is described by 
Aştilean et al. (2002) and according to this paper several 
different clients can access the system to receive data 
about the road traffic. To extend the covered area (for 
simulation and routing strategies) the UDAS is 
implemented in a distributed architecture located on 
different servers. 

The scheduling of message queues has strong similarities 
with algorithms used for giving different service rates to 
flows within network routers. For example, the Weighted 
Fair Share (WFS) queuing discipline, Demers et al. 1989, 
allows different service rates to be allocated to different 
queues according to some requested share. WFS were 
developed in the context of packet-switched networks to 
protect one network flow from another. It belongs to a set 
of virtual-time-based algorithms that provide fairness 
and/or delay bounds (Michael et al. 1996 and Sundell et 
al. 2003). Message scheduling is distinct from packet 
scheduling in that the time it takes for a message to be 
serviced cannot be easily estimated; in a packet scheduler, 
it is a simple function of the packet length. This means 
that the guarantees given by the message scheduler are by 
nature less precise according to Huang (1991), Hunt et al. 
(1994) and Shavit et al. (1999). 

Most of the complex real world problems are solved using 
distributed environments (Gomez-Sanz et al. 2002 and 
Jennings 2001).  

Authors propose a message scheduler which uses time-
based credit-scheduling, in which resources are 
partitioned among messages solvers (MS) by allocating 
credits. The total credits allocated to a MS is a fraction 
(defined by the share given to the task) of the time period 



 
 

     

 

T. The scheduler always chooses to schedule the MS with 
the highest number of remaining credits that has a non-
empty queue, i.e. the scheduler is work-conserving. Each 
time a MS is scheduled, the scheduler measures how long 
it runs before it completes. This amount is deducted from 
the total number of credits for that MS. 

The key motivation behind of this research is to create a 
simulation system that can execute discrete event 
simulations efficiently (different traffic situations, control 
algorithms, designing new roads), yet achieve the 
transparency (implies the separation of efficiency from 
correctness) within a standard language and its runtime.  

2. SYSTEM ARCHITECTURE 

Efficient control of urban traffic requires the 
implementation of a sufficiently accurate model allowing 
prediction of the effects of various control actions (such 
as adaptation of red – green phases at different 
intersections) Michael et al. (1996). Given the size of the 
plant it is important that one can use a distributed 
implementation of this simulation model. The 
computational efficiency is also improved by using a 
heterogeneous model, where some parts of the network 
are represented by a macroscopic model, other parts by a 
microscopic model. Long road sections with fairly 
homogeneous traffic conditions are represented by time 
driven macroscopic models describing the evolution over 
time of flow, speed and density of vehicles in different 
locations. In other parts of the plant it is more efficient to 
use event driven microscopic models representing the 
times at which individual cars cross certain boundaries. 
This is the case for short sections of road and for 
intersections. Each component represents some 
randomness in the evolution of the plant. Also the 
problem of connecting time driven and event driven 
components to each other in a computationally efficient 
way is discussed and a solution is proposed. Traffic lights 
possess sensors to provide basic information relating to 
their immediate environment. This includes road and 
clock sensors, measuring the presence and density of 
traffic and providing the time of day to the traffic light. 
In Figure 1 the system architecture is presented. 
 

 

Fig. 1 System Architecture 
 
The nodes are represented by computers or virtual 
machines (runs application servers) used to simulate the 
traffic behavior (collecting data, changing the control 
algorithms and different scenarios). 

For data transfer among application servers a Queue 
Event System is designed, implemented and used. A 
distributed messaging system built in Java as the context 
is described further. Messages can be local messages 
(from the road traffic simulator, data acquisition, routing 
system etc.) or from a different PC (road traffic simulator, 
routing system) and have one receiver or several receivers 
(broadcast messages). A messaging system, where 
messages on different topics are carried from one or more 
producers to one or more receivers, with a discipline for 
time allocation, priorities rules and reallocation rules is 
designed and implemented in this work. The QES must 
work efficiently; in parallel (to accept several message 
producers); to avoid deadlocks and to use existent 
resources in an optimal way. 

Messages can either be outgoing from local applications 
or in-coming from the network. In the first case, the 
associated task transmits them over the network; in the 
latter, it executes the associated application specific 
callback. The selection of the scheduling mechanism is 
determined by the needs of this messaging system. The 
arrival distribution of events and their dispatch time are 
not in general known a priori. As a messaging system 
may be used by different applications in different 
contexts, the means by which importance is attached to 
topics should be as general as possible. The scheduler 
must be work conserving and parallelizable, allowing it to 
make best use of the available resources and to scale with 
increasing numbers of processors. We don’t assume any 
particular support from the underlying OS and assume 
that thread scheduling is non-preemptive. 

Improvements to urban traffic congestion must focus on 
reducing internal bottlenecks to the network, rather than 
replacing the network itself. 

Messages exchanged between simulation nodes have 
different length, priority and type and it is important to be 
processed using an algorithm which takes into 
consideration these requirements. Using the wireless 
communication is justified for the situation where the 
cabling connection is costly, inefficient and for the 
situation where the access to information is done during 
the way between different points with or without 
predefines position.  

We used the wireless communication to collect 
information from traffic and for servers communication 
the wire connection is suitable due to the higher 
bandwidth and transfer rate offered. 

A Queue Event System (QES) is used to manage the 
messages processing by each server. 

The necessary data is collected from different sensors 
(installed on the road surface and counting the number of 
vehicles, cameras installed along the roads which provide 
visual information about the traffic, ultrasonic sensors 
etc.) locally stored and transmitted to other simulation 
nodes. The UDAS will provide information about the 
traffic such as: congestions, queues at the priority to all 
requests from the police, ambulances and fire department 



 
 

     

 

and will also provide detailed information to the public 
transportation companies. 

3. THE QUEUE EVENT SYSTEM 

In the next section we motivate our choice of a time based 
credit scheduler for the messaging system and compare it 
with other alternatives. We then describe the 
implementation of the system showing how coordination 
between scheduling threads can be achieved using an 
appropriate lock free data structure. We give the invariant 
for this data structure and explain why this invariant is 
strong enough for use within the messaging system. We 
describe what fairness means for a work conserving 
scheduler on a multiprocessor system. 

Messages can either be outgoing from local applications 
or incoming from the network. In the first case, the 
associated task transmits them over the network; in the 
latter, it executes the associated application-specific 
callback. The selection of the scheduling mechanism is 
determined by the needs of this messaging system. The 
arrival distribution of events and their dispatch time are 
not in general known a priori. As a messaging system 
may be used by different applications in different 
contexts, the means by which importance is attached to 
topics should be as general as possible. The scheduler 
must be work conserving and parallelizable, allowing it to 
make best use of the available resources and to scale with 
increasing numbers of processors. 

The total amount of allocated credits to a Message Solver 
(MS) is a fraction of the ΔT time interval. The QES will 
give the access to the processor to the MS with the bigger 
credit. For each MS scheduled for execution QES 
determine the maximum credit time and this time is 
extracted from the total credit amount of all MS.  

Let be 0 ≤ vi ≤ 1, vi – is the credit allocated to MSi and si 
is the total number of messages from queue in a second, ri 
– is the number of messages which are processed to the 
MSi in a second. The number of messages which are 
processed by MSi is formed by the number of messages 
guaranteed that can be processed (because of the allocated 
credit) and other messages which can be processed 
supplementary due to relocation of credits. Rmax is the 
maximum rate, ui – resource fraction which a MS try to 
consume, xi ratio between vi and ui: 

 
(1) 

 
(2) 

 For xi = 1, MSi tries to use all the allocated credit, a 
value higher than 1 means that the MSi has more credit 
that is needed and a value smaller than 1 suggests that it is 
starving for more credit. Given value for vj, sj and Rmax, ri 
is: 

 
(3) 

Algorithm for message scheduling: 
Thread SchedulingThread 

while true do 
t SchedulableTasks.get(); 
if t.credit = 0 

then 
resetAllTaskCredits(); 
/* the MS with bigger credit has 0. deltaT is 
over*/ 

continue while 
end if 
e t.eventQueue.get(); 
To getTime(); 
t.processEvent(e); 
t.credit t.credit − (getTime() − To); 
if --t.queueSize > 0  

then 
SchedulableTasks.put(t); 

/* the MS with more messages is put back for 
scheduling */ 

end if 
end while 

A MS, t, has an event queue t.eventQueue where the 
messages are introduced based on allocated credit, 
t.credit. A message is processed when MS has credit and 
the queue has at least one item. 

We refer to the priority queue as SchedulableTasks. The 
MS with the most credit has the highest priority and is 
therefore at the head of the priority queue, from where it 
is removed by a scheduling thread for execution. Once 
invoked, the MS processes exactly one event. The 
scheduling thread measures the execution time and uses 
this to decrease the credit of the task, thus changing its 
priority. If the highest priority MS is out of credit, then no 
MS has credit left and the scheduling thread resets the 
credits of all MSs, i.e. the scheduler is work conserving. 
This situation occurs at the latest when the scheduling 
period T expires; but may occur earlier if some of the MS 
had less work than their allocated share. Using multiple 
scheduling threads allows the scheduler to run on multiple 
CPU cores. For efficient operation, it is important that a 
scheduling thread is not blocked by another. 

All the information about the credits a MS has is 
maintained within the MS itself, and because it is only 
updated by the scheduler thread that took the MS out of 
SchedulableTasks, this information does not need to be 
thread-safe. 

The event queue of tasks is implemented as a Michael 
Scott lock free FIFO queue. This queue allows scheduling 
threads (the readers) and input threads or application 
threads (the writers) to concurrently access the same 
queue without the need for locking. 

Writer threads and scheduling threads coordinate in 
deciding whether a MS is schedulable or not. A writer 
thread that adds a new event to a MS that is currently not 
scheduled will add it to SchedulableTasks. Likewise, a 
scheduling thread that finds the event queue of a MS 
empty will remove the MS from the set. 



 
 

     

 

The scheduler thread removes the MS from Schedulable-
Tasks and returns it if there is still work to do (i.e., an 
event is in the task’s queue). If the scheduler thread 
detects that there is no more work to do for a MS, it is not 
returned to the queue. It is the responsibility of the writer 
thread to put the MS back into SchedulableTasks when 
the MS has again events in its queue. This coordination is 
achieved without locking by using an atomic counter 
t.queueSize for the number of events in the MS’s event 
queue.  

The writer thread increments t.queueSize after having 
written an event, whereas the scheduler thread 
decrements it after reading an event. The scheduler thread 
will only return the MS to the set if the value is non-zero. 
A writer recognizes that a scheduler thread did not return 
a MS if the value before it succeeded in incrementing the 
atomic counter was zero. 

We find that for time granularities that make sense in a 
messaging system running over a LAN (in the 100 – 1000 
μs range) one level of messages groups is adequate. 

Let be:  
x – a message with higher priority than message y. 
Get()A; Put(x)B; Ok()B; Put(y)B; 
Ok()B; Ok(y)A; Get()C; Ok(x)C; 
Each operation consists of a start of invocation and its 
completion. For example, Put(x) A stands for the start of 
the put invocation of message x into the priority queue by 
thread A, and Ok() A corresponds to its completion. The 
history is not linearizable when the priority of x is higher 
than the priority of y as no legal sequential history can 
respect the fact that the addition of x completed before the 
addition of y but was removed after. The practical 
consequence of this is that thread A retrieves a lower 
priority task than thread C, even though the get operation 
of thread A precedes the get of thread C and task x was 
put in before message y. Fig.2 illustrates this inversion of 
priorities. 

The concurrent priority queue  
Let a put operation be defined as follows: 
PUT ::= [e : Element, start : Time, end : Time] 
where start and end are the times that the operation 
started and completed at and e is the element added with 
priority e.prio. Let a get operation be defined as: 
GET ::= [p : PUT, start : Time, end : Time, e : Element] 
where start and end are the times that the operation 
started and completed at and p is the put operation whose 
element the get operation retrieves. It must be the case 
that an element is retrieved only after it has been added. 
Vg : GET , g.end > g.p.start 
We define a history of the observed get operations 
ordered by their time of completion. 
H : SEQ of GET , 8i < j H[i].end _ H[j].end 
Then the following must hold 8i, j i < j: 
H[i].e.prio < H[j].e.prio => H[i].start < H[j].p.end 

 
Fig.2. The put and get operation (t1<…<t4) 

 
For example, suppose we have three tasks T0, T1 and T2 
with shares v0 = 0.6, v1 = 0.1 and v2 = 0.4, suppose further 
that we know that Rmax = 10000. We would like to know 
what values are received for the three messages if s0 = 
4,000, s1 = 6,000 and s2 = 5,000. It is clear that r0 is 4,000 
because message T0 is sending less than its share. That 
leaves 6,000 to be shared among T1 and T2. Both T1 and 
T2 will get their guaranteed share (3,000 and 2,000 
respectively) plus some fraction of the spare capacity 
(1,000) that T0 has reserved but is not using. The 
unreserved capacity is shared proportionally to the shares 
v1 and v2, so T1 gets 60% and T2 gets 40%, meaning that 
r1 = 3,600 and r2 = 2,400. We now give the general 
formula for calculating ri for an arbitrary resource 
allocation between a set of tasks and an arbitrary 
attempted sending rate on those tasks on a single 
processor.  

In all of the tests the following configuration has been 
used unless otherwise stated. The time period over which 
the shares are valid is set to 10 ms; the number of 
messages used in the priority queue is set to 100; the 
communication between machines is always Megabit 
Ethernet, and TCP for the transport layer with the socket 
size set to 128 Kbytes is used. 

To calculate the execution time for each contractor task, a 
model based on cellular automata is proposed. 

A cellular automaton is a discrete model studied in 
computability theory, mathematics, theoretical biology 
and Microstructure Modeling. It consists of a regular grid 
of cells, each in one of a finite number of states. The grid 
can be in any finite number of dimensions. Time is also 
discrete, and the state of a cell at time t is a function of the 
states of a finite number of cells (called its neighborhood) 
at time t − 1. These neighbors are a selection of cells 
relative to the specified cell, and do not change. Every 
cell has the same rule for updating, based on the values in 
this neighborhood. Each time the rules are applied to the 
whole grid a new generation is created (Willox et al. 2003 
and Martins et al. 2000). 

In this case the cells represent the contractor task/thread. 
Each cell can have maxim of 8 neighbors, like in Fig.3. 

 
Fig.3 Contractor task using cellular automata 



 
 

     

 

The cell stats are: 
• 0 – for the active task (green colour); 
• 1 – for the waiting task (yellow colour); 
• 2 – for the task that had finalized their work 

(red colour); 
The cells can change their states from 0 to 1, from 0 to 2 
or from 1 to 0. A cell passes from 0 to 1 when the initial 
execution time is finished and the task is not 
accomplished. A cell passes from 0 to 2 when the initial 
execution time is finished and the task is accomplished. A 
cell passes from 1 to 0 when a new execution time is 
allocated for the task.  

A simple example is presented in Fig.4. At the initial step 
(Fig.4.1) we have 9 active tasks. Each task has allocated 
by the QES an initial execution time “s0”.  After the time 
“s” is finished, the cells have the states presented in Fig. 
4.2. At the next step (Fig.4.3) all waiting task will be 
active, a time “s1”, where “s1” is given by the QES 
according with the task priority.  

   

 Fig.4.1.      Fig.4.2       Fig.4.3       Fig.4.4 ... Fig.4.11  

 

4. PERFORMANCE AND RESULTS 

The scheduler guarantees that when a scheduler threads 
executes it will choose the available task that best fits the 
schedule. In case of a machine with one CPU in which the 
scheduler thread is the only thread that runs, then all tasks 
will always be available and the share allocated to the task 
will simply be a fraction of the CPU. In a real system here 
are many other threads running (messaging system, timer 
threads, monitoring threads of the I/O, threads supporting 
the control part of the messaging protocol and also JVM 
normally runs several threads). In conclusion the 
scheduler threads are not all the time running and the 
allocated share time for a task on a single machine is a 
share of a fraction of the time when the scheduler runs.  

The problem becomes more complex in a multi-core 
architecture because when a scheduler thread is serving a 
task, that task is unavailable to other scheduler threads. 
This is simply a consequence of the fact that a task is 
allocated to at most one scheduler thread at any given 
moment. 
The number of processors on which scheduler threads run 
in parallel is the product of the number of processors and 
their probability of getting scheduled. The maximum 
percentage of total scheduling time that any task can get is 
then given by (4): 

 
(4) 

where: N – number of processors and P – represents the 
probability that a scheduler thread is scheduled by the OS. 

If P = 1, then no task can ever get more than 1/N of the 
total time the scheduler’s threads run. For fixed N this 
approaches 100% as P gets smaller, and for fixed P it 
approaches 1/N as N gets bigger. 

We run several tests for testing the proposed QES having 
the time period set to 10 ms. Number of different types of 
messages is 5 and for each core of the machine a 
scheduler thread is used. The communication between 
machines is a Megabit Ethernet, and we use TCP for the 
transport layer with the socket size set to 128 Kbytes. The 
message size is variable (can have 32 bytes, 64 bytes, 128 
bytes length). All machines are running with Windows 
with Java 6. The machine on which the subscribers run 
has 2 × 2.3 GHz 2 core processors, i.e. 4 cores in total.  

We measure the maximum number of messages per 
second we can send between a single publisher and a 
single subscriber (either PCs or virtual machines). 

Fig.5 shows the evolution of the effective throughput and 
the end-to-end delay as a function of the publishing rate. 
The system sustains a rate of 120000 msg/s. The average 
end to end delay rises from below 1 ms for 1000 msg/s to 
slightly above 10 ms at 120000 msg/s. Above this figure 
the system is no longer sustainable, and the average delay 
rises dramatically. 

a.  

b.  
Fig.5. Bandwidth/delay for one publisher to one 
subscriber. 

 

5. CONCLUSIONS 

In this paper authors have shown how a messaging system 
supporting different qualities of service for different 



 
 

     

 

topics can be built using an event dispatching model; 
motivating the choice of time based credit scheduling 
within the messaging system and given a statement of the 
guarantees that it provides. 

Finally, various aspects of the overall system are 
investigated in particular in relation to throughput, delay, 
scalability with processors and performance isolation. 
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