

Designing a Queue Events System for road traffic simulator

Camelia Avram*, Adina Morariu*, Honoriu Vălean*, Adina Aştilean*

*Technical University of Cluj Napoca, Romania
(e-mail:{camelia.avram, adina.pop, honoriu.valean, adina.astilean}@aut.utcluj.ro)

Abstract: The urban traffic is frequently perturbed by congestions, followed by usual delays,
accidents and road closures that cause supplementary delays. It is important to use intelligent
systems for traffic simulation, routing strategies and scheduling techniques in order to achieve an
optimal usage of resources. Scheduling message queues has strong similarities with algorithms
used for giving different service rates to flows within network routers. In this paper a message
scheduler that uses time based credit scheduling is proposed, in which resources are partitioned
among messages solvers by allocating credits. Various aspects of the overall system are
investigated in particular in relation to throughput, delay, scalability with processors and
performance isolation.
Keywords: computer simulation, concurrent programming, distributed control, communication
protocols, computer communication networks.

1. INTRODUCTION

Nowadays researches in many domains depend on
software simulations to model various processes or
hypothetical scenarios that often cannot be satisfactorily
expressed theoretically nor easily reproduced and
observed empirically. Based on system identification an
optimal simulation models are derived and implemented
as distributed application (depending on the type of the
process large scale architecture are taken into account).
Depending on circumstances the time or event driven
simulation is adopted. The event processing involves
tasks and messages exchange (producing, handling and
erasing) that imply choosing different scheduling
techniques in order to achieve an optimal usage of
resources.

Traffic congestion management was recognized as a
major problem in modern urban areas, since it has caused
much frustration and loss of people’s time. Traffic
congestion has been increasing worldwide as a result of
increased population growth and changes in population
density. Congestion reduces efficiency of transportation
infrastructure and increase travel time, air pollution, and
fuel consumption.

In this paper the authors propose a distributed architecture
used to simulate large scale systems using virtual
machines and modern communication techniques and
tasks scheduling. Building discrete event simulators
leverage modern virtual machines to achieve performance
and quality of services.

Virtual machine-based simulation provides the
transparency of the kernel based approach with the
performance of a library based approach, using language-
based techniques, but within a standard language and its
runtime Barr et al. (2004).

The urban traffic is frequently perturbed by congestions,
followed by usual delays, accidents and road closures that
cause supplementary delays. The architecture of Urban
Traffic Advisory System (UDAS) is described by
Aştilean et al. (2002) and according to this paper several
different clients can access the system to receive data
about the road traffic. To extend the covered area (for
simulation and routing strategies) the UDAS is
implemented in a distributed architecture located on
different servers.

The scheduling of message queues has strong similarities
with algorithms used for giving different service rates to
flows within network routers. For example, the Weighted
Fair Share (WFS) queuing discipline, Demers et al. 1989,
allows different service rates to be allocated to different
queues according to some requested share. WFS were
developed in the context of packet-switched networks to
protect one network flow from another. It belongs to a set
of virtual-time-based algorithms that provide fairness
and/or delay bounds (Michael et al. 1996 and Sundell et
al. 2003). Message scheduling is distinct from packet
scheduling in that the time it takes for a message to be
serviced cannot be easily estimated; in a packet scheduler,
it is a simple function of the packet length. This means
that the guarantees given by the message scheduler are by
nature less precise according to Huang (1991), Hunt et al.
(1994) and Shavit et al. (1999).

Most of the complex real world problems are solved using
distributed environments (Gomez-Sanz et al. 2002 and
Jennings 2001).

Authors propose a message scheduler which uses time-
based credit-scheduling, in which resources are
partitioned among messages solvers (MS) by allocating
credits. The total credits allocated to a MS is a fraction
(defined by the share given to the task) of the time period

T. The scheduler always chooses to schedule the MS with
the highest number of remaining credits that has a non-
empty queue, i.e. the scheduler is work-conserving. Each
time a MS is scheduled, the scheduler measures how long
it runs before it completes. This amount is deducted from
the total number of credits for that MS.

The key motivation behind of this research is to create a
simulation system that can execute discrete event
simulations efficiently (different traffic situations, control
algorithms, designing new roads), yet achieve the
transparency (implies the separation of efficiency from
correctness) within a standard language and its runtime.

2. SYSTEM ARCHITECTURE

Efficient control of urban traffic requires the
implementation of a sufficiently accurate model allowing
prediction of the effects of various control actions (such
as adaptation of red – green phases at different
intersections) Michael et al. (1996). Given the size of the
plant it is important that one can use a distributed
implementation of this simulation model. The
computational efficiency is also improved by using a
heterogeneous model, where some parts of the network
are represented by a macroscopic model, other parts by a
microscopic model. Long road sections with fairly
homogeneous traffic conditions are represented by time
driven macroscopic models describing the evolution over
time of flow, speed and density of vehicles in different
locations. In other parts of the plant it is more efficient to
use event driven microscopic models representing the
times at which individual cars cross certain boundaries.
This is the case for short sections of road and for
intersections. Each component represents some
randomness in the evolution of the plant. Also the
problem of connecting time driven and event driven
components to each other in a computationally efficient
way is discussed and a solution is proposed. Traffic lights
possess sensors to provide basic information relating to
their immediate environment. This includes road and
clock sensors, measuring the presence and density of
traffic and providing the time of day to the traffic light.
In Figure 1 the system architecture is presented.

Fig. 1 System Architecture

The nodes are represented by computers or virtual
machines (runs application servers) used to simulate the
traffic behavior (collecting data, changing the control
algorithms and different scenarios).

For data transfer among application servers a Queue
Event System is designed, implemented and used. A
distributed messaging system built in Java as the context
is described further. Messages can be local messages
(from the road traffic simulator, data acquisition, routing
system etc.) or from a different PC (road traffic simulator,
routing system) and have one receiver or several receivers
(broadcast messages). A messaging system, where
messages on different topics are carried from one or more
producers to one or more receivers, with a discipline for
time allocation, priorities rules and reallocation rules is
designed and implemented in this work. The QES must
work efficiently; in parallel (to accept several message
producers); to avoid deadlocks and to use existent
resources in an optimal way.

Messages can either be outgoing from local applications
or in-coming from the network. In the first case, the
associated task transmits them over the network; in the
latter, it executes the associated application specific
callback. The selection of the scheduling mechanism is
determined by the needs of this messaging system. The
arrival distribution of events and their dispatch time are
not in general known a priori. As a messaging system
may be used by different applications in different
contexts, the means by which importance is attached to
topics should be as general as possible. The scheduler
must be work conserving and parallelizable, allowing it to
make best use of the available resources and to scale with
increasing numbers of processors. We don’t assume any
particular support from the underlying OS and assume
that thread scheduling is non-preemptive.

Improvements to urban traffic congestion must focus on
reducing internal bottlenecks to the network, rather than
replacing the network itself.

Messages exchanged between simulation nodes have
different length, priority and type and it is important to be
processed using an algorithm which takes into
consideration these requirements. Using the wireless
communication is justified for the situation where the
cabling connection is costly, inefficient and for the
situation where the access to information is done during
the way between different points with or without
predefines position.

We used the wireless communication to collect
information from traffic and for servers communication
the wire connection is suitable due to the higher
bandwidth and transfer rate offered.

A Queue Event System (QES) is used to manage the
messages processing by each server.

The necessary data is collected from different sensors
(installed on the road surface and counting the number of
vehicles, cameras installed along the roads which provide
visual information about the traffic, ultrasonic sensors
etc.) locally stored and transmitted to other simulation
nodes. The UDAS will provide information about the
traffic such as: congestions, queues at the priority to all
requests from the police, ambulances and fire department

and will also provide detailed information to the public
transportation companies.

3. THE QUEUE EVENT SYSTEM

In the next section we motivate our choice of a time based
credit scheduler for the messaging system and compare it
with other alternatives. We then describe the
implementation of the system showing how coordination
between scheduling threads can be achieved using an
appropriate lock free data structure. We give the invariant
for this data structure and explain why this invariant is
strong enough for use within the messaging system. We
describe what fairness means for a work conserving
scheduler on a multiprocessor system.

Messages can either be outgoing from local applications
or incoming from the network. In the first case, the
associated task transmits them over the network; in the
latter, it executes the associated application-specific
callback. The selection of the scheduling mechanism is
determined by the needs of this messaging system. The
arrival distribution of events and their dispatch time are
not in general known a priori. As a messaging system
may be used by different applications in different
contexts, the means by which importance is attached to
topics should be as general as possible. The scheduler
must be work conserving and parallelizable, allowing it to
make best use of the available resources and to scale with
increasing numbers of processors.

The total amount of allocated credits to a Message Solver
(MS) is a fraction of the ΔT time interval. The QES will
give the access to the processor to the MS with the bigger
credit. For each MS scheduled for execution QES
determine the maximum credit time and this time is
extracted from the total credit amount of all MS.

Let be 0 ≤ vi ≤ 1, vi – is the credit allocated to MSi and si
is the total number of messages from queue in a second, ri
– is the number of messages which are processed to the
MSi in a second. The number of messages which are
processed by MSi is formed by the number of messages
guaranteed that can be processed (because of the allocated
credit) and other messages which can be processed
supplementary due to relocation of credits. Rmax is the
maximum rate, ui – resource fraction which a MS try to
consume, xi ratio between vi and ui:

(1)

(2)

 For xi = 1, MSi tries to use all the allocated credit, a
value higher than 1 means that the MSi has more credit
that is needed and a value smaller than 1 suggests that it is
starving for more credit. Given value for vj, sj and Rmax, ri
is:

(3)

Algorithm for message scheduling:
Thread SchedulingThread

while true do
t SchedulableTasks.get();
if t.credit = 0

then
resetAllTaskCredits();
/* the MS with bigger credit has 0. deltaT is
over*/

continue while
end if
e t.eventQueue.get();
To getTime();
t.processEvent(e);
t.credit t.credit − (getTime() − To);
if --t.queueSize > 0

then
SchedulableTasks.put(t);

/* the MS with more messages is put back for
scheduling */

end if
end while

A MS, t, has an event queue t.eventQueue where the
messages are introduced based on allocated credit,
t.credit. A message is processed when MS has credit and
the queue has at least one item.

We refer to the priority queue as SchedulableTasks. The
MS with the most credit has the highest priority and is
therefore at the head of the priority queue, from where it
is removed by a scheduling thread for execution. Once
invoked, the MS processes exactly one event. The
scheduling thread measures the execution time and uses
this to decrease the credit of the task, thus changing its
priority. If the highest priority MS is out of credit, then no
MS has credit left and the scheduling thread resets the
credits of all MSs, i.e. the scheduler is work conserving.
This situation occurs at the latest when the scheduling
period T expires; but may occur earlier if some of the MS
had less work than their allocated share. Using multiple
scheduling threads allows the scheduler to run on multiple
CPU cores. For efficient operation, it is important that a
scheduling thread is not blocked by another.

All the information about the credits a MS has is
maintained within the MS itself, and because it is only
updated by the scheduler thread that took the MS out of
SchedulableTasks, this information does not need to be
thread-safe.

The event queue of tasks is implemented as a Michael
Scott lock free FIFO queue. This queue allows scheduling
threads (the readers) and input threads or application
threads (the writers) to concurrently access the same
queue without the need for locking.

Writer threads and scheduling threads coordinate in
deciding whether a MS is schedulable or not. A writer
thread that adds a new event to a MS that is currently not
scheduled will add it to SchedulableTasks. Likewise, a
scheduling thread that finds the event queue of a MS
empty will remove the MS from the set.

The scheduler thread removes the MS from Schedulable-
Tasks and returns it if there is still work to do (i.e., an
event is in the task’s queue). If the scheduler thread
detects that there is no more work to do for a MS, it is not
returned to the queue. It is the responsibility of the writer
thread to put the MS back into SchedulableTasks when
the MS has again events in its queue. This coordination is
achieved without locking by using an atomic counter
t.queueSize for the number of events in the MS’s event
queue.

The writer thread increments t.queueSize after having
written an event, whereas the scheduler thread
decrements it after reading an event. The scheduler thread
will only return the MS to the set if the value is non-zero.
A writer recognizes that a scheduler thread did not return
a MS if the value before it succeeded in incrementing the
atomic counter was zero.

We find that for time granularities that make sense in a
messaging system running over a LAN (in the 100 – 1000
μs range) one level of messages groups is adequate.

Let be:
x – a message with higher priority than message y.
Get()A; Put(x)B; Ok()B; Put(y)B;
Ok()B; Ok(y)A; Get()C; Ok(x)C;
Each operation consists of a start of invocation and its
completion. For example, Put(x) A stands for the start of
the put invocation of message x into the priority queue by
thread A, and Ok() A corresponds to its completion. The
history is not linearizable when the priority of x is higher
than the priority of y as no legal sequential history can
respect the fact that the addition of x completed before the
addition of y but was removed after. The practical
consequence of this is that thread A retrieves a lower
priority task than thread C, even though the get operation
of thread A precedes the get of thread C and task x was
put in before message y. Fig.2 illustrates this inversion of
priorities.

The concurrent priority queue
Let a put operation be defined as follows:
PUT ::= [e : Element, start : Time, end : Time]
where start and end are the times that the operation
started and completed at and e is the element added with
priority e.prio. Let a get operation be defined as:
GET ::= [p : PUT, start : Time, end : Time, e : Element]
where start and end are the times that the operation
started and completed at and p is the put operation whose
element the get operation retrieves. It must be the case
that an element is retrieved only after it has been added.
Vg : GET , g.end > g.p.start
We define a history of the observed get operations
ordered by their time of completion.
H : SEQ of GET , 8i < j H[i].end _ H[j].end
Then the following must hold 8i, j i < j:
H[i].e.prio < H[j].e.prio => H[i].start < H[j].p.end

Fig.2. The put and get operation (t1<…<t4)

For example, suppose we have three tasks T0, T1 and T2
with shares v0 = 0.6, v1 = 0.1 and v2 = 0.4, suppose further
that we know that Rmax = 10000. We would like to know
what values are received for the three messages if s0 =
4,000, s1 = 6,000 and s2 = 5,000. It is clear that r0 is 4,000
because message T0 is sending less than its share. That
leaves 6,000 to be shared among T1 and T2. Both T1 and
T2 will get their guaranteed share (3,000 and 2,000
respectively) plus some fraction of the spare capacity
(1,000) that T0 has reserved but is not using. The
unreserved capacity is shared proportionally to the shares
v1 and v2, so T1 gets 60% and T2 gets 40%, meaning that
r1 = 3,600 and r2 = 2,400. We now give the general
formula for calculating ri for an arbitrary resource
allocation between a set of tasks and an arbitrary
attempted sending rate on those tasks on a single
processor.

In all of the tests the following configuration has been
used unless otherwise stated. The time period over which
the shares are valid is set to 10 ms; the number of
messages used in the priority queue is set to 100; the
communication between machines is always Megabit
Ethernet, and TCP for the transport layer with the socket
size set to 128 Kbytes is used.

To calculate the execution time for each contractor task, a
model based on cellular automata is proposed.

A cellular automaton is a discrete model studied in
computability theory, mathematics, theoretical biology
and Microstructure Modeling. It consists of a regular grid
of cells, each in one of a finite number of states. The grid
can be in any finite number of dimensions. Time is also
discrete, and the state of a cell at time t is a function of the
states of a finite number of cells (called its neighborhood)
at time t − 1. These neighbors are a selection of cells
relative to the specified cell, and do not change. Every
cell has the same rule for updating, based on the values in
this neighborhood. Each time the rules are applied to the
whole grid a new generation is created (Willox et al. 2003
and Martins et al. 2000).

In this case the cells represent the contractor task/thread.
Each cell can have maxim of 8 neighbors, like in Fig.3.

Fig.3 Contractor task using cellular automata

The cell stats are:
• 0 – for the active task (green colour);
• 1 – for the waiting task (yellow colour);
• 2 – for the task that had finalized their work

(red colour);
The cells can change their states from 0 to 1, from 0 to 2
or from 1 to 0. A cell passes from 0 to 1 when the initial
execution time is finished and the task is not
accomplished. A cell passes from 0 to 2 when the initial
execution time is finished and the task is accomplished. A
cell passes from 1 to 0 when a new execution time is
allocated for the task.

A simple example is presented in Fig.4. At the initial step
(Fig.4.1) we have 9 active tasks. Each task has allocated
by the QES an initial execution time “s0”. After the time
“s” is finished, the cells have the states presented in Fig.
4.2. At the next step (Fig.4.3) all waiting task will be
active, a time “s1”, where “s1” is given by the QES
according with the task priority.

 Fig.4.1. Fig.4.2 Fig.4.3 Fig.4.4 ... Fig.4.11

4. PERFORMANCE AND RESULTS

The scheduler guarantees that when a scheduler threads
executes it will choose the available task that best fits the
schedule. In case of a machine with one CPU in which the
scheduler thread is the only thread that runs, then all tasks
will always be available and the share allocated to the task
will simply be a fraction of the CPU. In a real system here
are many other threads running (messaging system, timer
threads, monitoring threads of the I/O, threads supporting
the control part of the messaging protocol and also JVM
normally runs several threads). In conclusion the
scheduler threads are not all the time running and the
allocated share time for a task on a single machine is a
share of a fraction of the time when the scheduler runs.

The problem becomes more complex in a multi-core
architecture because when a scheduler thread is serving a
task, that task is unavailable to other scheduler threads.
This is simply a consequence of the fact that a task is
allocated to at most one scheduler thread at any given
moment.
The number of processors on which scheduler threads run
in parallel is the product of the number of processors and
their probability of getting scheduled. The maximum
percentage of total scheduling time that any task can get is
then given by (4):

(4)

where: N – number of processors and P – represents the
probability that a scheduler thread is scheduled by the OS.

If P = 1, then no task can ever get more than 1/N of the
total time the scheduler’s threads run. For fixed N this
approaches 100% as P gets smaller, and for fixed P it
approaches 1/N as N gets bigger.

We run several tests for testing the proposed QES having
the time period set to 10 ms. Number of different types of
messages is 5 and for each core of the machine a
scheduler thread is used. The communication between
machines is a Megabit Ethernet, and we use TCP for the
transport layer with the socket size set to 128 Kbytes. The
message size is variable (can have 32 bytes, 64 bytes, 128
bytes length). All machines are running with Windows
with Java 6. The machine on which the subscribers run
has 2 × 2.3 GHz 2 core processors, i.e. 4 cores in total.

We measure the maximum number of messages per
second we can send between a single publisher and a
single subscriber (either PCs or virtual machines).

Fig.5 shows the evolution of the effective throughput and
the end-to-end delay as a function of the publishing rate.
The system sustains a rate of 120000 msg/s. The average
end to end delay rises from below 1 ms for 1000 msg/s to
slightly above 10 ms at 120000 msg/s. Above this figure
the system is no longer sustainable, and the average delay
rises dramatically.

a.

b.
Fig.5. Bandwidth/delay for one publisher to one
subscriber.

5. CONCLUSIONS

In this paper authors have shown how a messaging system
supporting different qualities of service for different

topics can be built using an event dispatching model;
motivating the choice of time based credit scheduling
within the messaging system and given a statement of the
guarantees that it provides.

Finally, various aspects of the overall system are
investigated in particular in relation to throughput, delay,
scalability with processors and performance isolation.

ACKNOWLEDGMENT: This paper was supported by
the project "Develop and support multidisciplinary
postdoctoral programs in primordial technical areas of
national strategy of the research - development -
innovation" 4D-POSTDOC, contract nr. POSDRU/89/1.5
/S/52603, project co-funded from European Social Found
through Sectorial Operational Program Human Resources
2007-2013.

REFERENCES

Aştilean, A., Avram, C., Leţia, T., Hulea, M., and Vălean,
H. (2002). Using Mobile Data Services for Urban
Driving Advisory Systems, Mobile Open Society
through Wireless Telecommunications - MOST
Conference, Varsow, Poland, pag. 4, ISBN 83 -
87091 - 32 4.

Aştilean, A., Leţia, T., Vălean, H., and Avram, C. (2004)
Patients Monitor System Based on the Bluetooth
Technology, IEEE-TTTC International Conference
on Automation, Quality and Testing, Robotics, pp.
403-408, ISBN 973-713-046-4, Romania.

Avram, C., and Boel, R. (2005). Distributed
Implementation of A Heterogeneous Simulation Of
Urban Road Traffic, European Conference on
Modeling and Simulation, Riga.

Barr, R., Haas, Z.J., and van Renesse, R., JiST. (2004) An
efficient approach to simulation using virtual
machines, Software – Practice and Experience, John
Wiley & Sons, Ltd.

Demers, A., Keshav, S., and Shenker, S. (1989). Analysis
and simulation of a fair queueing algorithm,
Symposium Proceedings on Communications
Architectures & Protocols. New York, NY, USA:
ACM Press.

Huang, Q. (1991). An evaluation of concurrent priority
queue algorithms, Massachusetts Institute of
Technology, MIT Cambridge, MA, USA.

Hunt, G. C., Michael, M. M., Parthasarathy, S., and Scott,
M. L. (1994). An efficient algorithm for concurrent
priority queue heaps, University of Rochester,
Rochester, NY.

Martins, M.L., Ceotto, G., Alves, S.G., Bufon, C.C.B.,
Silva, J.M., and Laranjeira, F.F. (2000). A Cellular
Automata Model for Citrus Variagated Chlorosis,
eprint arXiv: cond-mat/0008203.

Michael, M. M., and Scott, M. L. (1996). Simple, fast,
and practical nonblocking and blocking concurrent
queue algorithms, Proceedings of the 15th ACM
Symposium on Principles of Distributed Computing.

Searle, J.R. (1969). Speech acts: an essay in the
philosophy of language. Cambridge University Press,
Cambridge, UK.

Shavit, N., and Zemach, A. (1999). Scalable concurrent
priority queue algorithms, PODC ’99: Proceedings of
the Eighteenth Annual ACM Symposium on Principles
of Distributed Computing. New York, NY, USA:
ACM Press.

Sundell, H., and Tsigas, P. (2003). Fast and lock-free
concurrent priority queues for multi-thread systems,
Proceedings of the 17th International Parallel and
Distributed Processing Symposium. IEEE press.

Willox, R., Grammaticos, B., Carstea, A.S., and Ramani,
A. (2003) Epidemic Dynamics: Discrete-Time and
Cellular Automaton Models, Physica.

