

THE EFFICIENCY OF THE REGISTER FILE BASED ARCHITECTURES IN THE OOP

LANGUAGES ERA

Marius Stoian & Gheorghe Stefan

Department of Electronics, Politehnica University of Bucharest,

E-mail: gstefan@arh.pub.ro

Abstract: Stack oriented architectures are compared with register file oriented

architectures in order to decide what is the best for building cellular programmable

machines. Area & power vs. computing performance are investigated considering two

kind of ``users": (i) a compiler, which is another machine, and (ii) a human mind, writing

hand coded programs.

Keywords: Computer architecture, Object Oriented Languages

1. INTRODUCTION

Cellular computing replicate the same processing

element (PE) in different configurations in order o

increase the number of GOPS using as small as

possible area and power. Any optimization is

welcome if the resulting machine is designed for the

consumer market. Thus, early architectural decisions

are very important in the process of optimizing the

area & power vs. performance ratio. One of these

early decisions to be made is between the stack

oriented or register file oriented architecture for the

PEs used to implement a multi- or many-processor

array.

The file oriented architecture looks to be more

flexible, while the stack oriented one is too rigid in

optimizing the number of clock cycles needed to

perform a certain computation. But, when we say

``more flexible" or ``too rigid" we are referring to a

human user who is involved in optimizing

``manually" the code. In real life a compiler is the

one who is involved in generating the code to be

executed. When the compiler becomes the user, too

much flexibility starts to be a limitation and a more

rigid allocation of variables starts to be a ``virtue".

We expect a compiler to be more ``comfortable" with

a stack architecture than with a register file

architecture. We define for our purpose two simple

execution units, maximizing the storage component

and taking into account the loop closed through an

usual arithmetic & logic unit.

The first uses a stack to store the operand and the

second uses a file register for the same purposes. The

two structure are synthesized in identical conditions

and the area and power is measured.

Next, the two structures are used to compute the

same thing executing a code generated automatically

by two different (but similar as performance)

compilers. The number of clock cycles will be

compared.

We will state preliminary conclusions based on this

simple and short investigation. The result will be

used to encourage more detailed, focused, and

sophisticated investigations.

The second approach investigates a special kinds of

stack in comparison with the same file register.

Because no compiler is available, only hand coded

assembly programs are used to evaluate the

performance.

2. THE TWO STRUCTURES

Two test structures are considered for evaluating the

architectural and structural effects of the alternative

fileregister/ stack. Both are designed to store the

same number of variables (16), one in a file register

and another in a stack. The two structures use the

same arithmetic & logic unit (ALU).

2.1 Register file based execution unit

The file-register version stores the variables in a 2-

output one-input 16-word file-register. For the sake

of simplicity the following Verilog description uses

compact coded inputs and outputs. The execution

unit consists in an ALU, loop connected with the

associated file-register. In order to avoid any

ambiguities the most accurate description of the

structure is provided as a Verilog module.

Fig. 1. File-register execution unit.

In each clock cycle two operands are fetched from

the file register to the input of ALU, and the resulting

output of ALU is written back into the register file.

2.2 Stack based execution unit

The stack version for the execution unit is considered

in two versions. A simple one is provided to be

associated with the behavior of a Java compiler, and

a more complicated one will be associated with

``hand written" code.

The operations performed by the stack are the

following: nop, push, pop, write, pop_write, swap. The

module incorporates the same ALU used by the register

file version. The interface registers are similar (minus

10 bits for the input register, because less bits are

needed for controlling this kind of unit). The associated

Verilog module for the simple version follows.

Fig. 2. Stack execution unit.

The stack module is a 16-level simple stack with

access to the first two recordings: stack0, stack1. The

binary operations use stack0, stack1, while the unary

operations use stack0. The result is pushed or written

back in top of stack (stack0). The operation swap acts

on stack0, stack1.

Because the operands are stack0, stack1 the speed is

expected to be improved because the fetch of the

operands, from the register file version, is avoided.

This kind of execution units has 20% less control bits

than the previous.

3. EVALUATIONS

The solutions for the two execution units are

compared taking into account the physical resources

involved (area & power) and the resulting

performances (speed & clock_cycles/task).

3.1 Area & Power

The two structures are synthesized for 130 nm,

standard process with the same time constriction of

2.5 ns (the timing limit is imposed by the file-register

version which is the ``laziest").

The file register version uses 83% more area and

consumes 55% more power (the power is estimated

considering that 12% is the mean degree of structures

Table 1 The file register vs. the stack version with the

time restriction of 2.5 ns.

Version Area Power Time

File

register
44602 µ

2
 2.32 mW 2.51 ns

Stack 24320 µ
2
 1.49 mW 2.35 ns

File/Stack 1.83 1.55

switching in each clock cycle). Results a very big

structural advantage for the stack version. The effect

of this advantage will be partially diminished by the

decreased performances in execution achieved by the

stack version. It depends on how big is the increase

of computing time expressed in the number of clock

cycles.

3.2 Computing performance

A first experiment consist of the same computation

performed on both structures. Let be the computation

described by the following expressions (the test is

provided by [3], and can be considered meaningful

for the purpose of our investigation):

a <= a + b + c + d/2;

b <= a + b/2 - c - d;

c <= a - b/2 - c + d;

d <= a - b + c - d/2;

The associated C program, compiled for a file

register machine, is:

int f(int a, int b, int c, int d);

int main(void){

f(1234,5678,9012,3456);

return 0;

}

int f(int a, int b, int c, int d){

int a1 = a + b + c + d/2;

int b1 = a + b/2 - c - d;

int c1 = a - b/2 - c + d;

int d1 = a - b + c - d/2;

return g(a1,b1,c1,d1);

}

int g(int a, int b, int c, int d){

return a + b + c + d/2;

}

The resulting code is executed in 28 clock cycles.

Some optimization are detected when the generated

code is inspected.

The Java program for the same computation,

compiled for a stack architecture, is:

public class Test{

public static void main(String[] _args){

f(1234,5678,9012,3456);}

public static

int f(int a, int b, int c, int d){

int a1 = a + b + c + d/2;

int b1 = a + b/2 - c - d;

int c1 = a - b/2 - c + d;

int d1 = a - b + c - d/2;

return g(a1,b1,c1,d1);}

public static

int g(int a, int b, int c, int d){

return a + b + c + d/2;}}

The resulting code is executed in 39 clock cycles.

Examining the code generated by the compiler no

optimization is detected. The number of clock cycles

associated to the stack architecture is 1.39 times bigger.

Theoretically, on the same area the stack version

performs 31.65% more computation.

3.3 Improved stack experiment

A second experiment will start from an improved

stack structure called pseudo-stack. Hand coded

programs, for the same computation, are provided for

both the file register version and the pseudo-stack

version.

The pseudo-stack structure is a modified stack which

provides access to the first 8 levels, instead of only

the first 2, as for the simple stack previously used.

The connections of the modified stack are the

following:

pseudo_stack(stack0, stack1, stack2, stack3,

stack4, stack5, stack6, stack7,

in0, in1,

func,

clock);

The right operand will be selected by a 3-bit code

between the a value from the input register and one

of the outputs stack1, stack2, stack3, stack4, stack5,

stack6, stack7.

Thus, the pseudo-stack gains some file register

features (Table 2).

For this experiment we will provide hand written

code for both versions.

Fig. 3. Pseudo-stack execution unit.

Table 2 Adding the improved stack

Version Area Power Time

File register 44602 µ2 2.32 mW 2.51 ns

Pseudo-stack 27747 µ2 1.54 mW 2.44 ns

Stack 24320 µ2 1.49 mW 2.35 ns

File/Ps-stack 1.60 1.50

Ps-stack/ File 1.14 1.03

Results for the file version a 10 clock cycle execution

and for the pseudo-stack version a 12 clock cycle

execution. The file register version is 20% faster but

60% bigger.

Theoretically, on the same area the pseudo-stack

version performs 33.33% more computation.

4. CONCLUSIONS

The investigation presented in this paper is done in

the context of the strategic switch of the consumer

market toward parallel computation. Both, multi- and

many processor approach (Shekar Y. Borkar, et. all ,

2005) benefit from the result of this research. The

PEs having small & simple execution units,

considered mainly in the seminal paper about the “13

dwarfs" (Krste Asanovic, et. All, 2006), can be

optimized using the conclusions of our research.

1. The main result of our investigation is: stack

oriented architecture has a big chance to improve

with at least 30% the use of the area in cellular

(many-processor) computation.

2. The number of wires (data & control) broadcasted

into an array of stack processors is significantly

reduced (from 35 to 25 or 27) allowing important

savings in area and power. For a file-register version

30 - 40% more wires are used.

3. The power is more efficiently used by stack units,

but not as much as the area, because inside the stack

the bits ``are moving" at each push or pop.

4. The pseudo-stack reduces the cycle performance

gap between the file register oriented architecture and

the stack oriented architecture. The ”price" for this is

very small: 14% in area, and almost nothing in

power. The power is almost the same because data

moving in stack is the same in both versions.

5. There are also a lot of effects on efficiency in the

generation of the code for a stack machine. But these

effects are beyond thepurpose of this investigation.

REFERENCES

Krste Asanovic, et. All 2006.: The Landscap of

Parallel Computing Research: A View from

Berkeley, Technical Report No. UCB/EECS-

2006-183, December 18,

Shekar Y. Borkar, et. all. 2005: Platform 2015: Intel

Processor and Platform Evolution for the Next

Decade, Intel Corporation,.

Bogdan Mitu: Private Communication.

