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Abstract: Epidemic propagation models have been applied on modeling the 
propagation of viruses. Some mathematical models and computer simulations 
deal with the spatial distribution of susceptible along a line, across a lattice or 
over a network to overcome the inaccuracies due to the assumption of random 
mixing of the population. The viral propagation is determined by intrinsic 
characteristics of the network. This paper presents a model of the co-evolution 
of transmissible disease and a population of non-randomly mixed susceptible 
agents. The simulation applies a modified mathematical SIR epidemiological 
model of disease transmission. In this paper the authors propose an intelligent 
model for avian influeza spreading.  
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1. INTRODUCTION 
 
Since the 1920’s, stochastic models of epidemics 
have been used for viruses spreading modeling and 
simulation. Epidemic propagation models (Bailey, 
1975) have been applied on modeling the 
propagation of viruses (Kephart and White, 1993a). 
Simulation models have been used to discuss the 
influence of the network topology (Kephart, 
1994)(Wang,  2000)(Pastor-Satorras, 2001a). 
Virtual experiments are conducted by varying the 
type of topology, the number of nodes, density and 
isolation. Experiment results show that random 
graph topology generated by the same density and 
isolation as real world data set could be used on 
modeling the viruses’ propagation. Kephart and 
White (1991, 1993b) are among the first who 
propose epidemiology-based analytic models. Their 
studies, however, are based on topologies that do 
not represent modern networks. Staniford et al. 
(2002) reported a study of the Code Red worm 
propagation, but did not attempt to create an 
analytic model. The more recent studies by Pastor-
Satorras et al. (2001a, 2001b, 2002a, 2002b, 2002c) 
and Barabási et al. (1999, 2002) focused on 
epidemic models for power-law networks. The viral 

propagation is largely determined by intrinsic 
characteristics of the network.  
This work aims to develop a general analytic model 
of avian influenza virus propagation and based on 
this model a system that will help to prevent the 
spreading in the populated area and to warn the 
population. This paper is proposing the use of 
existing models to determine the avian influenza 
spreading for Romania. A similar system exists in 
SUA, HPAI (Highly Pathogenic Avian Influenza), 
which with the program for pandemic response are 
part of the National Strategy for pandemic 
influential.  
 
 

2. THE SIMULATION MODEL 
 
The standard model is based on a population of 
individuals who are either susceptible to a specific 
disease (susceptible denoted S) or infected with the 
disease and capable of transmitting it to others 
(infected denoted I) (*** and Tassier, 2005). An 
SIR model is an epidemiological model that 
computes the theoretical number of people infected 
with a contagious illness in a closed population 
over time. The name of this class of models derives 



from the fact that they involve coupled equations 
relating the number of susceptible people S(t), 
number of people infected I(t), and number of 
people who have recovered R(t). One of the 
simplest SIR models is the Kermack-McKendrick 
model. Population members who overcome a 
disease may become immune to further infection or 
may become susceptible once again depending on 
the particular disease. Population members who are 
immune to a disease or remain infected but through 
isolation cannot transmit it, are considered removed 
(denoted R). The model described above is known 
as an SIR model. It may be modified slightly to 
provide fresh susceptible through birth or 
immigration. Some pertinent parameters of 
epidemic models are as follows. The period of time 
during which a disease exists entirely within an 
organism is known as the disease’s latent period. 
The organism is not infected during this period. An 
incubation period often follows latency. During 
incubation the organism may not show outward 
sign of infection but is nevertheless infected. 
Usually once the incubation period is over, the 
victim of the disease is clearly marked by 
symptoms and can therefore be avoided by 
susceptible. Probabilistic epidemiological models 
that operate in discrete time steps are particularly 
suited for a software implementation. At any time 
step, the probability of a new case of the disease 
appearing is proportional to the number of 
susceptible multiplied by the number of infected. 
This basic model assumes random mixing of 
individuals in the population and does not allow for 
the complex interactions between physically 
separated sub-populations, nor for variable 
incubation or latent periods of a disease. The 
problems inherent in models that make simplifying 
assumptions concerning the nature of spatial 
distributions are discussed in Durrett et al (1994). 
Various extensions to the SIR model to allow for 
these phenomena have been added over the last 
fifty years. Some mathematical models and 
computer simulations deal with the spatial 
distribution of susceptible along a line, across a 
lattice or over a network to overcome the 
inaccuracies due to the assumption of random 
mixing of the population. Cellular-automata and 
other discrete versions of the SIR method have been 
utilized also, Willox et al (2003) and Martins et al 
(2003). Some of these models have also 
incorporated disease carriers, and non-
homogeneous populations.  
The model proposed in the current paper is a 
modified SIR model for epidemics and allows all of 
these phenomena to emerge from the simulation 
without hard-coding their behavior.  
The virus propagation mechanisms are categorized 
as one-to-one, one-to-many, many-to-one, and 
many-to-many. The category refers to the number 
of infection source and the number of infection 
targets at once. A new measure, isolation, is needed 
to describe the virus propagation topology since the 

isolation nodes are critical to in the propagation 
process. The change of states is determined by the 
propagation of viruses through the network and the 
propagation of warning messages through the local 
community. We assume that the population will 
receive an automatic warning message if their local 
authorities receive a warning about the virus 
propagation. 
 
 
2.1 Model for virus spreading into a populated area 
 
St - number of persons that can be infected 
It - number of persons that are infected 
Rt - number of persons that are cured 
N – Total population 
st = St / N 
it = It / N 
rt = Rt / N 
st + it + rt = 1 
β = γ • α  
 
β – Persons infected by one infected person during 
a time interval 
γ – Persons that are taking contacts with a infected 
person  
α – infected persons from γ, in % 
st, it, rt – population at the moment t in time 
k – Recovering coefficient 
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2.2 Model virus spreading between two populated 

areas 
 
A Bayesian network  is a  probabilistic graphical 
model that represents a set of variables and their 
probabilistic independencies, and are used in the 
domain of artificial intelligence and statistics. 
Formally, Bayesian networks are directed acyclic 
graphs whose nodes represent variables and whose 
arcs encode conditional independencies between 
the variables. 
 
If there is an arc from node A to another node B, A 
is called a parent of B, and B is a child of A. The set 
of parent nodes of a node Xi is denoted by 
parents(Xi). A directed acyclic graph is a Bayesian 



Network relative to a set of variables if the joint 
distribution of the node values can be written as the 
product of the local distributions of each node and 
its parents (***): 

( ) (( )∏
=

=
n

i
iin XparentsXPXXP

1
1 |,,K )  

f node Xi has no parents, its local probability 
distribution is said to be unconditional, otherwise it 
is conditional. If the value of a node is observed, 

then the node is said to be an evidence node. 
In figure 1 the Bayes network for virus spreading is 
presented. 
 
The spread model equations for avian influenza are: 
 
( ) ( ) ( ) ( )VPNPVNLPLVNP Λ=ΛΛ |22  
( ) ( ) ( ) ( )VPNPVNLPLVNP Λ=ΛΛ |22  
( ) ( ) ( ) ( )VPNPVNLPLVNP Λ=ΛΛ |22  
( ) ( ) ( ) ( )VPNPVNLPLVNP Λ=ΛΛ |22  
( ) ( ) ( )
( ) ( )22

222

LVNPLVNP

LVNPLVNPLP

ΛΛ+ΛΛ+

+ΛΛ+ΛΛ=
 

 
( ) 12 | pVNLP =Λ  
( ) 22 | pVNLP =Λ  
( ) 32 | pVNLP =Λ  
( ) 42 | pVNLP =Λ  
( ) NpNP =  

( ) NpNP −=1  
( ) VpVP =  

( ) VpVP −=1  
 
L1 – populated area from where the virus is started 
L2 – populated area where we which the virus can 
appear 
N – Commuters from L1  
V – Potential tourists from L1 

 
P(N) – probability that in L1 exist commuters 
P(V) – probability that in L1 exist tourists 
 
( )VNLP Λ|2  – probability of arriving in L2 

co muters and tourists m
( )VNLP Λ|2  – probability of arriving in L2 only 

tourists 
( )VNLP Λ|2  – probability of arriving in L2 only 

commuters 
( )VNLP Λ|2  – probability of not arriving in L2 

tourists and commuters 
p1, p2, p3 and p4 – statistical data  
 
P(N), P(V), p1, p2, p3 and p4 are chose arbitrary. 
 
 

3. SIMULATION AND TESTING 
 
A simulation based on agent technology is 
proposed. The models presented above are used to 
determine the evolution in time of the infected 
individuals in a populated area and between them.  
Agents may wander randomly over the space and 
have a position and velocity. During each time step 
of the simulation, agents expend an amount of 
energy proportional to their volume to move and 
metabolise. At each simulation time step, energy is 
gained by an agent from the environment. Agents 
exhausting their energy supply “die” and are 
removed from the simulation. Agents also age 
throughout a simulation and are removed if they 
reach the end of their lifespan.  
The agents in the model may carry virtual diseases, 
transmit them to other agents and succumb to 
infection themselves. The diseases in the simulation 
co-evolve alongside the agent population but may 
only exist within a host agent i.e. disease does not 
persist in the environment. A susceptible agent is 
exposed to a disease when it intersects with an 
infective agent. An agent that is carrying a disease 
cannot be infected by a second disease (i.e. an 
active disease blocks secondary infection). If an 
agent is not carrying a disease its susceptibility is 
determined. Simulation diseases also possess a 
devastation value that measures the virulence of a 
disease. This parameter is used to scale the 
probability of infection and the amount of energy 
required of a host to survive a time step of 
infection. 
A parameter determines the lifespan of a simulation 
disease in each host. Long-lived diseases require a 
host to invest substantial amounts of energy to 
overcome infection. If a disease is overcome 
without the death of the host, the agent acquires 
immunity to the strain of the disease by adding it to 
an immunity list. Any further contact with this 
disease will result in an immune response that 
prevents the disease from infecting the agent a 
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Figure 1. The Bayes network for virus spreading.  



second time. If a disease kills its host, or the host 
dies for any reason, the disease it carries dies also, 
irrespective of its lifespan.  
The parameters for the disease and agents outlined 
fully specify the features of a epidemic models 
discussed above. A complex and flexible simulation 
has been devised that allows for studies of 
epidemics in non-homogeneous populations with 
nonrandom mixing. This model eliminates many of 
the problems in earlier epidemiological models. 
Depending on the parameters of the disease, the 
traits of the infected agent and the population as a 
whole, the disease may or may not cause an 
epidemic. 
 
Some observed outcomes are described below 
along with the conditions giving rise to them in the 
present simulation environment. 
 
Disease elimination (immediate). If the disease is 
insufficiently long-lived, or the population is 
insufficiently dense, or the host does not co-habit 
with others, then the disease may fail to contact any 
susceptibles before it dies within the host. The 
disease will be eliminated from the population 
immediately.  
 
Disease spread (immediate). A disease may mutate 
sufficiently within a host to infect susceptibles 
neighbors significantly different to the original 
host. If the host mixes amongst others of its kind 
they may become infected with the disease also.  
 
Disease elimination (eventual). If the disease 
manages to take a hold in the population it may 
nevertheless die out eventually if the number of 
susceptibles is reduced. This may happen when a 
sizeable proportion of the agents encountered by 
infectives is immune to the disease (even though 
the population as a whole may not have a 
significant number of immune members). 
Circumstances like this arise when agents overcome 
the disease and acquire immunity, or when the 
disease is so devastating that it rapidly wipes out 
the supply of susceptibles before the agents are able 
to produce many offspring. 
 
Disease spread (continual). A disease well-suited 
to its environment has sufficient lifespan to ensure 
it is passed from one susceptible agent to another. 
Such a disease also needs to be sufficiently 
devastating that it can be transferred successfully, 
but not so devastating that it kills off its supply of 
susceptibles. Diseases that fit these criteria also 
have to be sufficiently stable to avoid unwanted 
mutations that would render them ineffective, but 
sufficiently mutable so that they can keep infecting 
an evolving population of hosts. The simulation has 
given rise to diseases that meet all of these criteria 
and persist in the population for long periods of 
time. 
 

 
3.1 Test case 

A. Spreading inside of a populated area 
 

Iteration 
step Susceptible Infected Cured 

1 0.9998 0.0002 0.0 
2 0.9997 0.0003 0.0 
3 0.9996 0.0004 0.0 
4 0.9995 0.0005 0.0 
5 0.9993 0.0007 0.0 
… … … … 
20 0.9732 0.0118 0.0148 
21 0.9662 0.0149 0.0187 
22 0.9575 0.0187 0.0237 
23 0.9468 0.0232 0.0298 
24 0.9335 0.0288 0.0375 
…    
40 0.3801 0.1037 0.5161 
41 0.3564 0.0931 0.5503 
42 0.3365 0.0823 0.5811 
43 0.3198 0.0718 0.6082 
44 0.3060 0.0619 0.6320 
45 0.2947 0.0528 0.6524 
46 0.2853 0.0447 0.6698 
47 0.2777 0.0376 0.6846 
48 0.2714 0.0314 0.6970 
49 0.2663 0.0262 0.7074 
50 0.2621 0.0217 0.7161 

 
In figure 2 the evolution of infected population is 
presented. 
 
B. Spreading between two populated area 
 

Suppose that avian influenza appeared in 
Floresti, Cluj County and the simulation model was 
applied to test the apparition of virus in Cluj-
Napoca, near Floresti. Figure 3 represents the 
Bayes network for virus spreading. 

Floreşti 

V N 

Cluj - 
Napoca 

Figure 3. The Bayes network for virus 
spreading. Test Case. 
Input data: 
 
( ) 8.0=NP  



( ) 5.0=VP  

( ) 2.08.01 =−=NP  

( ) 5.05.01 =−=VP  
 
( ) 8.0| =Λ− VNNapocaClujP   
( ) 2.0| =Λ− VNNapocaClujP   
( ) 7.0| =Λ− VNNapocaClujP  

( ) 1.0| =Λ− VNNapocaClujP  
 
( )

32.08.05.08.0 =••=
=−ΛΛ NapocaClujVNP

  

 
( )

02.02.05.02.0 =••=
=−ΛΛ NapocaClujVNP

  

 
( )

28.07.05.08.0 =••=
=−ΛΛ NapocaClujVNP

  

 
( )

01.01.05.02.0 =••=
=−ΛΛ NapocaClujVNP

  

 
( )

63.001.028.002.032.0 =+++=
=− NapocaClujP

 

 
 

CONCLUSIONS AND FUTURES WORKS 
 
In this paper an intelligent model is proposed. 
Several applications of the intelligent models were 
used to simulate different types of systems but not 
for avian influenza. Previous works in this filed are 
open for public and makes the documentations 
difficult.  
The models for virus spreading into a populated 
area and between two populated are presented. The 
proposed models were tested and the results are 
presented above. 
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Figure 2. The evolution of infected population  

 


