
 
 
 
 
 
 
 
 
 
 
 
 

NOWADAYS MOBILE SOFTWARE. AN EXAMPLE   
 
 

Dan-Costin Tuşaliu 
Adrian-Gabriel NeaŃu 

Cosmin Selaru 
Manole Ecaterina 

 
 

University of Craiova 
 
 
 
 

Abstract: A mobile game is a video game played on a mobile phone, smartphone, PDA, 
handheld computer or any type of handheld or wireless device. Mobile games are played 
using the technologies present on the device itself. For networked games, there are 
various technologies in common use. Examples include text message (SMS), multimedia 
message (MMS) or GPRS location identification. More common, however, are non 
networked applications that simply use the device platform to run the game software. The 
games may be installed over the air, they may be side loaded onto the handset with a 
cable, or they may be embedded on the handheld devices by the OEM or by the mobile 
operator. This paper is focused in the development of a golf game using J2ME 
technology.  
 
Keywords: Java, Mobile Software, Game, Engine, Interface, Pixel, Graphics  

 
 
 

 
1. INTRODUCTION 

 
Mobile games are developed using platforms and 
technologies such as Windows Mobile, Palm OS, 
Symbian OS, Macromedia's Flash Lite, DoCoMo's 
DoJa, Sun's J2ME (Java 2 Micro Edition, recently 
rebranded simply "Java ME"), Qualcomm's BREW 
(Binary Runtime Environment for Wireless), WIPI or 
Infusio's ExEn (Execution Environment). Other 
platforms are also available, but not as common. 
 
Mobile games tend to be small in scope and often 
rely on good gameplay over flashy graphics, due to 
the lack of processing power of the client devices. 
One major problem for developers and publishers of 
mobile games is describing a game in such detail that 
it gives the customer enough information to make a 
purchasing decision. Currently, Mobile Games are 
mainly sold through Network Carriers / Operators 
portals and this means there are only a few lines of 
text and perhaps a screenshot of the game to excite 
the customer. Two strategies are followed by 
developers and publishers to combat this lack of 
purchasing information, firstly there is a reliance on 

powerful brands and licenses that impart a suggestion 
of quality to the game such as Tomb Raider or Colin 
McRae and secondly there is the use of well known 
and established play patterns (game play mechanics 
that are instantly recognisable) such as Tetris, Space 
Invaders or Poker. Both these strategies are used to 
decrease the perceived level of risk that the customer 
feels when choosing a game to download from the 
carrier’s deck. 
 
Recent innovations in mobile games include 
Singleplayer, Multiplayer and 3D graphics. Virtual 
love games belong to both of singleplayer and 
multiplayer games. Multiplayer games are quickly 
finding an audience, as developers take advantage of 
the ability to play against other people, a natural 
extension of the mobile phone’s connectivity. With 
the recent internet gambling boom various companies 
are taking advantage of the mobile market to attract 
customers, Ongame the founders of PokerRoom 
developed in 2005 a working mobile version of its 
poker software available in both play money and real 
money. The player can play the game in a single 
player or multiplayer mode for real or play money. 



As well, the MMORPG boom seems to hit the world 
of mobile games. According to their website CipSoft 
has developed the first MMORPG for mobile phones, 
called TibiaME. SmartCell Technology, a mobile 
applications developer, is in development of the first 
cross-platform MMORPG called Shadow of Legend. 
Shadow of Legend will have the ability to play on 
both a PC and a mobile device. 
 
The dominant mobile software platform is Java (in its 
incarnation as "J2ME" / "Java ME" / "Java 2 Micro 
Edition"). J2ME runs atop a Virtual Machine (called 
the KVM) which allows reasonable, but not 
complete, access to the functionality of the 
underlying phone. The JSR process serves to 
incrementally increase the functionality that can be 
made available to J2ME, while also providing 
Carriers and OEMs the ability to prevent access, or 
limit access to provisioned software. 
 
This extra layer of software provides a solid barrier 
of protection which seeks to limit damage from 
erroneous or malicious software. It also allows Java 
software to move freely between different types of 
phone (and other mobile device) containing radically 
different electronic components, without 
modification. The price that is paid is a modest 
decrease in the potential speed of the game and the 
inability to utilise the entire functionality of a phone 
(as Java software can only do what this middle-man 
layer supports.) 
 
Because of this extra security and compatibility, it is 
usually a quite simple process to write and distribute 
Java mobile applications (including games) to a wide 
range of phones. Usually all that is needed is a freely 
available JDK (Java Development Kit) for creating 
Java software itself, the accompanying Java ME tools 
(known as the Java Wireless Toolkit) for packaging 
and testing mobile software, and space on a web 
server (web site) to host the resulting application 
once it is ready for public release. 
 
 

 
2. SPECIFICATION 

 
This engine offers support to the differences of level 
that determine the acceleration or slowing down of 
the ball. To vary at maxim the game possibilities, the 
texture of the playground will not be uniform, 
containing variation of level, water zones of 
teleportation that will alter the track of the ball 
depending on the situation.  
 
In structure, the game contains 18 different 
playgrounds with different difficulties ranges, which 
can be played in one of the three different modes: 
- progressive mode: one only player can play any 
playground from the 18 in one of the following 
configurations: any three of them, any six of them, 
the first nine of them or all 18; 

- two players: the two participants will play on the 
same playground and will execute successively hits 
depending on the chosen configuration from the 
three; 
- practice mode: it is chosen one of the playgrounds 
for practice and in this way the statistics of the game 
are not modified. 
 
 

3. OPTIONS AND INTERFACE ELEMENTS 
 

When entering the playground, depending on the 
cross over option, it is realized a motion for pre-
visualizing the playground. In any moment of the 
game, the user can move the perspective by pressing 
the numerical buttons, to analyze the whole 
playground. 
 
The physics of these motions over the playground is 
very realistic, using elaborated data structures to 
represent the playground, and takes into 
consideration the different types of texture the 
playground has: grass, water, concrete. Also, when 
editing the levels and in the representation of the 
code, there ware taken into consideration the level 
sensing of the playground, the absorption effects for 
the ball and the obstacles in the game. The power of 
the hit is established each time by the selection of a 
bar with a non linear variation that oscillates between 
two extremes.  
 
Playing a playground begins by selecting a start 
position, It is permitted, in this way, moving in a 
more restricted area before making the first hit, to 
realize a better positioning regarding the direction of 
the hit. 
 
Once the start position has been chosen, the direction 
of the hit is chosen by the circular moving of an 
indicator dotted-line. This moving is accelerated or 
decelerated to shorten the needed time for choosing 
the desired direction. The direction line has also a 
helping role, its dimension varying according to the 
obstacles met in the given direction.  
 
After choosing the direction, the strength of the hit is 
chosen. A varying scale is used in this matter. The 
oscillation varies continuously from the minimum 
value to the maximum value. By pressing a selection 
button the certain strength is chosen according the 
positioning of the cursor on the scale.  
 
In this way the ball moves on the playground also 
according the texture of the zone that can 
automatically influence the speed and direction of the 
ball, also with the absorbing holes. 
Another situation is when the ball reaches outside the 
playing area or in no-collision areas, as water holes. 
In this situation, the ball is automatically set at the 
beginning of the playground. There is a maximum of 
10 hits on each playground, and when this limit is 
reached the play on that playground is ended. 



  
 
3.1 The menu system 
 
The game has an easy usable interface that contains a 
main menu and a pause menu, each one with some 
submenus. 
 
In the main menu there will be accessible the 
following options: 
CONTINUARE: permits to continue the game in a 
progressive manner from the point where it was left 
or saved. 
JOC NOU: realizes the beginning of a completely 
new game (from the first playground) in the 
progressive mode. 
MOD DE JOC: permits the selection of one of the 
three game types available. 
STATISTICI: offers statistical information about the 
evolution in the progressive mode such as: numbers 
of holes played, number of playgrounds finished with 
one hit, the best total score for all the playgrounds, 
the total number of hits under a certain value called 
“par”.  
OPTIUNI: contains a set of game options such as  
activate/deactivate the music, activate/deactivate  the 
game sounds, the vibrations, the perspective motion. 
Also, to vary the facilities of the game it is permitted 
for the player to choose between the progressive 
mode or practice mode. The last option in the menu 
is to reset the game, which means to erase all 
information related to status of the game, as well as 
configuration of the game, and options of the game 
coming back to their default values.  
AJUTOR: presents information about the two sub-
options: CONTROL and MOD DE JOC; 
DESPRE: contains general information about the 
project. 
 
The tree structure of the main menu is graphically 
represented in Fig. 1.  
 
The Pause menu offers the following functionalities: 
 
REIA JOC: realizes the return in the game; 
TABELA DE SCOR: contains the PAR value for 
each playground together with the score obtained by 
the player; 
REJOACA TRASEU: replay playground; permits 
restarting the current playing playground (without 
resetting the number of hits); 
TERMINA JOC: finishes the current session of the 
game and returns to the main menu; 
AJUTOR: it’s the same option offered by the main 
menu; 
OPTIUNI: contains the same set of options with the 
exception of the choosing the personage, because this 
cannot be changed during the game. 
 
The Pause menu is presented in Fig. 2. 

 
 
Fig. 1. Main menu. It presents the tree structure of 

the main menu. 
 
 
 

 
 
Fig. 2. Pause menu.  Presents the tree structure of the 

pause menu. 
 



3.2 The structure and representation of the 
playgrounds 
 
Each playground has the dimension of 256x256 pixels 
and possesses a certain structure represented in the 
binary files from where the information is taken to 
generate them. This minimal structure has the role to 
diminish the information retained for each level. 
Because the dimension of the JAR archive has to be as 
small as possible, the resources must use as less space 
as possible. This is the reason for which there are used 
tiles and sprites to generate all the game levels. 
 
For each playground from the 18 available there 
exists a bin file that offers all necessary information 
to generate a playground for a level. These files have 
 

 
 
Fig. 3. Playground.  The view of a playground made 

of tiles and sprites. 
 
 

 
 
Fig. 4. Tiles level. Is the elementary texture and 

graphics level . 

been generated with the aid of a level editor that will 
not be presented here. 
 
In Fig. 3 there is represented a playground in the edit 
state. It is structured on three levels:  
1- the 16x16 tiles matrix that contains the playground 
view, as in Fig. 3 
2 – a sprites set having the role to enrich the view 
with different objects and animations , as in Fig. 6. 
3 – a set of field modifiers that changes the call 
direction giving it a certain acceleration (simulates 
the angle effect), as in Fig. 5. 
 
 

4. THE CODE ANSAMBLE STRUCTURE 
 
The code is structured in two principal classes and 
one interface: 
 

 
 
Fig. 5. Angle level. Shows the direction of the ball on 

the playground. 
 

 
 
Fig. 6. Sprites level - the ornamental role in the view. 
 



globals interface: contains the declarations for the 
majority of the global variables of the program; 
- MG class: is the MIDlet class of the application; 
this implements the life cycle methods of the game 
and creates the engine thread in the startApp() 
method. 
- engine : contains the working motor of the 
game. It extends the Canvas class to have a direct 
access for the graphical context of the apparatus. It 
implements the globals interface from which it takes 
all the global variables, and also the Runnable 
interface, and it will function in a separate thread 
startedb the startApp() method in the MIDlet class. 
 
CommandListener interface is implemented to 
benefit the command facilities,, even if the game 
functions in fullScreen mode. This is made by using 
the joint part for the events of pressing the commands 
by the listner and drawing on the screen the 
corresponding software buttons. 
  
PlayerListener interface is another listener that is 
used to intercept the audio events with the role to 
start the background music when a game sound end 
its play mode, by the playerUpdate() method. 
 
The MG class code is presented here that sets the 
application course in the interaction with the 
Application   Sistemul de Gestiune al Aplicatiilor : 
 
import javax.microedition.lcdui.*; 
import javax.microedition.midlet.*; 
 
//clasa care extinde MIDlet 
public class MG extends MIDlet 
{ 
  private static engine Engine=null; 
 
  public MG() 
  { 
 
  } 
 
  protected void destroyApp(boolean flag) throws 
MIDletStateChangeException 
  { 
        Display.getDisplay(this).setCurrent(null); 
 //opreste engine-ul 
        engine.bIsRunning = false; 
        //notifica AMS ca s-a efectuat terminarea 
MIDlet-ului 
 notifyDestroyed(); 
  } 
 
  protected void resumeApp() 
  { 
        //notifica iesirea din pauza 
 Engine.breakExit=true; 
        //reia functionarea 
     Engine.Resume(); 
  } 
 

  protected void pauseApp() 
  { 
   if(Engine!=null) 
   { 
                //reseteaza variabilele de tastatura (ultima 
tasta apasata, starea sa) 
    Engine.cachedKeyCode = 0; 
  Engine.nKeyState= 0; 
      Engine.clearKeys(); 
 
        } 
      //notifica AMS ca MIDlet-ul a intrat in pauza 
      notifyPaused(); 
  } 
 
  protected void startApp() throws 
MIDletStateChangeException //TS [12/4/2005] 
redesigned 
  { 
        //la prima intrare este creat si pornit engine-ul 
   if(Engine==null) 
   { 
    try 
  { 
     Engine=new engine(); 
     Engine.startme(this); 
    } 
    catch (Exception e) 
  { 
   System.out.println(e); 
  } 
    } 
        //se revine din pauza 
   else 
   { 
     Engine.breakExit=true; 
    Engine.clearKeys(); 
 
   } 
   } 
 
} 
 
 
 

5. CONCLUSIONS 
 

The games for mobile equipment, though they have 
many constraints, represent a manner to enrich the 
creativity in development. Also, the usage of 
consumed resources using J2ME it is much lower 
than in PC games. 
The development cycles are short, just couple of 
months usually, offering the possibility to realize 
different games in the same time and increases the 
possibility to create a greater success. 
 
The possibilities for further development in this 
application refer to: 
-  realizing different variants that permits multiplayer 
gaming over Bluetooth transmission or even WAN 
connection  



- realizing a 3D version in the moment when the 
technology will permit the transition of the 3D 
graphics API on the mobile phones.  
 
The distribution on larger areas of mobile phones that  
support Java has created a market for this type of 
games, better than that for PCs, and with much lower 
costs that make them accessible for everyone. So 
their popularity increases and overcomes the PC 
games that are still better in graphic and other 
facilities. 
Once realized, a success in the mobile phones games 
can be continued with adding new levels or facilities, 
representing a continuous attraction for a longer 
period of time on the market. 
This project is an example of such a game that offers 
a small piece of entertainment for the moments that 
the recreation with a mobile phone is more in hand. 
By the offered facilities can be also an interactive 
entertainment, because it can be also played in two 
players’ mode, successively. 
 
A very attractive facility will be also playing with 
several other players simultaneously by Bluetooth. 
This will be possible only after the standardization of 
API for Bluetooth on more phones. In the moment 
this is found only on some phones and the 
specifications for the protocol are not yet 
standardized so they do not permit synchronization 
and communication between any phone models. 
 
Once the computing power for the phones will grow, 
the 3D graphics API will be distributed and the 
interest for developing such variant will grow.  
 

 
REFERENCES 

 
Yuan, M. J., (2004) “Enterprise J2ME: Developing 

Mobile Java Applications”, Prentice Hall 
Knudsen, J., Li, S.,(2005) “Beginning J2ME: From 

Novice to Professional, Third Edition (Novice to 
Professional)”, Apress,  

Wells, M. J., Flynt, J. P., (2005) “Java ME Game 
Programming, 2E”, Thomas 

Hamer, C., (2005) “Creating Mobile Games: Using 
Java ME Platform to Put the Fun into Your 
Mobile Device and Cell Phone”, Apress  


