ADAPTIVE FIREWALLING IN AN UNIX ENVIRONMENT

Octavian Stefan

Automation and Applied Informatics Department,
Politehnica University of Timisoara
Timisoara, Romania
octavian.stefan@aut.upt.ro

Abstract: With the rapid growth of computer networks, security has become an essential
aspect of all operating systems. Rules based firewalls are used to deny unwanted access,
but those firewalls are vulnerable to unknown attack types missing from the rules
database. This paper propose a different firewalling approach, using a firewall with
dynamic rules set altering possibility and an intrusion detection system which combines a
misuse detection component, an anomaly detection component and a log analysis

component.

Keywords: network-centric computing, artificial intelligence and expert systems.

1. INTRODUCTION

There are some well known advantages in having a
computer connected to the Internet, but there are
some drawbacks too, because the highly connected
computing world provides malicious users with the
necessarily means for their destructive purposes. One
tool for preventing unauthorized access to a host or a
network is the firewall. Most firewalls have a user
defined rules set which is loaded when the firewall is
activated. Based on those rules, a firewall can deny,
allow or proxy the network traffic. Even with a good
rule set, the system can be vulnerable to unknown or
unlisted attack types. Some firewalls permit a user
intervention, when an unknown situation occurs and
ask the system administrator for a decision, but this
approach is almost in all situations unacceptable.

This paper proposes a different approach, an adaptive
firewall, where new rules are permanently added or
removed based on the decisions made by an intrusion
detection component.

Intrusion detection schemes based on traffic analysis
can be divided in two categories: misuse and
anomaly detection schemes.

The misuse method relies on a set of labeled data, a
traffic pattern for each different type of attack, upon
which the learning algorithm is trained. This method
is incapable of detecting new and undocumented
types of attack, but it is very efficient for the ones it
knows.

The anomaly method builds databases of normal
traffic data and then tries to detect any anomaly
related to this data. For the training part this method
needs a set of normal data, without any trace of
attack traffic, because the model may not detect this
attack type in the future.

The anomaly detection technique relies upon two
axioms: “The majority of the network connections
are normal traffic. Only X% of traffic is malicious”.
(Leung and Leckie, 1994) and “The attack traffic is
statistically different from normal traffic” (Leung and
Leckie, 1994).

Attacks fall into four categories: probing — is a class
of attacks where an attacker scans a network to
gather information or find known vulnerabilities. An
attacker with a map of machines and services that are
available on the network can use the information to
look for exploits; denial of service — is a class of

attacks where an attacker makes some computing or
memory resource too busy or too full to handle
legitimate requests, thus denying legitimate users
access to a machine. There are different ways to
launch DoS attacks: by abusing the computers
legitimate features, by targeting the implementation
bugs or by exploiting the system configurations; user
to root attacks — is a class of attacks where an
attacker starts out with access to a normal user
account on the system and is able to exploit
vulnerability to gain root access to the system. Most
common exploits in this category are regular buffer
overflows, which are caused by regular programming
mistakes and environment assumptions; remote to
user attack — is a class of attacks where an attacker
sends packets to a machine over a network, then
exploits machine’s vulnerability to illegally gain
local user access as a user. (Mukkamala et al., 2003).

Not all types of network related attacks are detectable
by analyzing the traffic, an example being a user to
root attack made from within a ssh tunnel. This type
of attacks requires a log and maybe a file system and
user commands analysis to detect.

The rest of the paper is organized as follows: in
section 2 it is described every component of the
adaptive firewall, in 3 the system is tested separately
for each component, in 4 the results are discussed
and in 5 some conclusions are set.

2. THE ADAPTIVE FIREWALL

The first component is the actual firewall, for which |
used the OpenBSD’s packet filter (PF). | used PF for
its online anchor mechanism (Holland et al., 2007).

The misuse component is an expert system being
able to learn, beside the traffic patterns for different
types of already known attacks, the patterns
discovered using the anomaly detection component.
The patterns contain sets of packet headers
information for different types of low level protocols
from the TCP/IP network model like Ethernet header,
IP header, TCP header, UDP header, ICMP header.
Incoming traffic is matched against these patterns
and if a perfect match is found it triggers an action
resulting in a deny access rule for the source IP
address being injected into the firewall online rules
using the anchor mechanism.

The log analysis component scans the online log for
known log entries of certain attacks, like unknown
user login attempt or incorrect password. If the log
system entries match the database entries for this
component again an action resulting in a deny access
rule for the specific IP address is triggered.

There are a lot of propesed algorithms for anomaly
intrusion detection systems in the specialized
literature: using payload algorithms (Wang and

Stolfo, 2004), genetic algorithms (Li,2004), visual
methods (Goodall,2006), adaptive regression splines
(Mukkamala et al.,2003), text categorization
techniques (Liao and Vemuri,2002), hashing
functions and clustering (Mahoney and Chan,2001),
neural networks (Ryan et al.,1998), (Debar et
al.,1992), (Fox et al.,1990) and (Frank 1994) , with
promising experimental results denoting that an
anomaly detection component may be used with
success in an adaptive firewall.

Our anomaly detection component will use a neural
network for anomaly detection, but with a different
approach, using packet header data as input data.
Studying in detail a set of possible attacks we can
state that almost all network attacks use a modified
packet header, with legal or illegal field values, for
the purpose of exploiting hidden vulnerabilities in
networks. Other attacks, like for example the syn
flood attack in Figure 1, use massive amount of
identical packets, issue easy to report by studding the
packet header.

I will only use low level protocol headers (Ethernet,
IP, TCP, UDP and ICMP) fields, because using a
different neural network for every application layer
protocol would result in an oversized detection
algorithm with extensive memory and computational
needs without noticeable positive results in the
detection.

Unfortunately, the TCP/IP network model low level
protocols headers design is the principal problem for
today’s network attacks. Figure 2 and Figure 3 show
examples of an IP header and a TCP header. For
optimizing the detection algorithm, I will merge the
one bit fields into 1 byte fields for the neural network
input data.

SYN
Client SYN Attacker = 4
Sery
Server ~/..,.“/
SYN-ACK 7
Server
Client
* Clentl — :
Server 59""@
?
Client
Fig. 1. Syn flood example
UIEEldﬁijr'Id'JUIJEB-‘-SEr'd'JJCIZ:SI-L'JE(J&UE"
Version I"["'g“:lcl Type of Service (TOS) Total Length
identification : DM Fragment Cfiset
Time To Liva (TTL) I Protocol Headear Checksum

Source Address

Destination Address

1P Opian (optional, not commen)

Fig.2. IP header

2 | 1,894 8901] A
Source Port Destination Fort

Sequance Numbear

Acknowlexigment Number

Dffset | Reserved | . E Windaw

Checksum Urgent Pointer

TCP Options (optional)

I I T l T | T

Fig.3. TCP header

W;
@]~
Wis

Fig.4. Mathematical representation of a neuron

Artificial neural networks are computational models
with the ability to learn, adapt and organize data.

An artificial neural network consists of a pool of
simple processing units called neurons
communicating with each other over a large number
of weighted connections.

Figure 4 describes a mathematical representation of a
neuron. Each neuron input has an associated weight
which can be modified to model synaptic learning.
The neuron output computes a function of the
weighted sum of inputs.

I use back-propagation neural networks for the
anomaly component, which are very good in finding
out the nonlinear correlation between inputs and
outputs.

Every packet header type has its own neural network.

The number of neurons for each level depends on the
packet header’s field number.

Empirically, it can be demonstrated that the
additional computation need for a network with more
than one hidden layer is not justified by the
additional detection rate, so | used a single hidden
layer neural network like in figure 5.

Fig.5 Neural network with one hidden layer and a
superposition neuron

3. EXPERIMENTS

I conducted the experiments in a controlled, small
environment using a total of 25 computers in a local
area network. The operating systems used were
OpenBSD and FreeDSB. After a training period of
10 days, when the network was injected with normal
application traffic, | started the injection of attack
simulation traffic for each intrusion detection system
component. Results were collected and a conclusion
for each component has been made. For the misuse
component and for the log analysis component an
online pattern database was used.

After the training period was completed and after |
tested each component in the controlled environment,
| used a demilitarized zone network for testing the
whole system in a real life environment.

4. RESULTS

For a more conclusive result | tested each intrusion
detection component separate.

Table 1 presents the misuse component reaction to
some randomly chosen attacks. As we can see the
component works very well with a 98% detection
rate for known attacks. In the case of bruteforceroot
attack it could not detect the attack because the traffic
was encapsulated in encrypted packets by the ssh
daemon.

Table 1. Misuse component detection rate for some

randomly chosen attacks

Attack

apache2
arppoison
bruteforceftp
bruteforcetelnet

bruteforceroot

ipsweep

mailbomb
named

neptune
nmap

pod
sendmail
smurf
teardrop

udpstorm

Table 2. Misuse component detection rate for some

Description

DOS, HTTP overflow in
apache web server
DOS, spoofed ARP with
bad IP/Ethernet map
R2L, FTP password
guessing

R2L, telnet password
guessing

U2R,root password
guessing inside a ssh
session

Probe, tests for valid IP
addresses

DOS, mail server flood
R2L, DNS buffer
overflow

DOS, SYN Flood
Probe, tests for listening
ports

DoS, oversized IP
packet

R2L, SMTP buffer
overflow

DOS, distributed ICMP
echo reply flood

DOS, overlapping IP
fragments

DOS, echo/charge loop
using spoofed request

Det.
rate
1/1
3/3
50/50
40/40

0/40

10/10

2/2

3/3
48/50

5/5

3/3

5/5

4/4

2/2

randomly chosen attacks

Attack

apache2
arppoison
bruteforceftp
bruteforcetelnet

bruteforceroot

ipsweep

mailbomb
named

neptune
nmap

pod

Description

DOS, HTTP overflow in
apache web server
DOS, spoofed ARP with
bad IP/Ethernet map
R2L, FTP password
guessing

R2L, telnet password
guessing

U2R,root password
guessing inside a ssh
session

Probe, tests for valid IP
addresses

DOS, mail server flood
R2L, DNS buffer
overflow

DOS, SYN Flood
Probe, tests for listening
ports

DoS, oversized IP
packet

Det.
Rate
0/1
0/3
50/50
40/40

40/40

0/10

0/2

0/3
0/50

0/5

Table 2 contains the results for the log analysis
component. Because this component doesn’t analyze
traffic but the system logs, it cannot react to
unlogged attack events as we can see from table 2.

This component comes as an add-on for the two
traffic related detection components, but it is very
useful for attacks like bruteforceroot in a ssh tunnel,
attacks transparent for the other components.

For an operation system with a good log process this
component has a very important role in the intrusion
detection.

The anomaly detection component results are
presented in Table 3. As we can see, it has a success
rate of 61 % in finding attacks.

The anomaly detection component injected some
false alarms into the system which could lead to
normal traffic filter. The number of false alarms was
very low, only a few per day. This is something we
have to consider acceptable for the system in order to
use the adaptive firewall.

The computational need for our components was
very low. In our case on dual processor systems the
CPU use was under 0,1 %.

Table 3. Anomaly component detection rate for some
randomly chosen attacks

Attack Description Det.
Rate

apache2 DOS, HTTP overflow in 1/4
apache web server

arppoison DOS, spoofed ARP with 2/3
bad IP/Ethernet map

bruteforceftp R2L, FTP password 47/50
guessing

bruteforcetelnet R2L, telnet password 36/40
guessing

bruteforceroot ~ U2R,root password 2140
guessing inside a ssh s.

ipsweep Probe, tests for valid IP 10/10
addresses

mailbomb DOS, mail server flood

named R2L, DNS buffer 2/2
overflow

neptune DOS, SYN Flood 2/3

nmap Probe, tests for listening 25/50
ports

pod DOS, oversized IP 1/5
packet

sendmail R2L, SMTP buffer 1/3
overflow

smurf DOS, distributed ICMP 2/5
echo reply flood

teardrop DOS, overlapping IP 1/4
fragments

udpstorm DOS, echo/charge loop 2/2

using spoofed request

Table 4. Adaptive firewall detection rate for real time
known attacks

Attack Description Det.
Rate

apache2 DOS, HTTP overflow in 4/4
apache web server

arppoison DOS, spoofed ARP with 3/3
bad IP/Ethernet map

bruteforceftp R2L, FTP password 5/5
guessing

bruteforcetelnet R2L, telnet password 4/4
guessing

bruteforceroot U2R,root password 4/4
guessing inside a ssh
session

ipsweep Probe, tests for valid IP 1/1
addresses

mailbomb DOS, mail server flood

named R2L, DNS buffer 212
overflow

neptune DOS, SYN Flood 3/3

nmap Probe, tests for listening 5/5
ports

pod DOS, oversized IP 3/3
packet

sendmail R2L, SMTP buffer 3/3
overflow

smurf DOS, distributed ICMP 5/5
echo reply flood

teardrop DOS, overlapping IP 4/4
fragments

udpstorm DOS, echo/charge loop 2/2

using spoofed request

Testing the adaptive firewall in the real time
environment had a success rate of 100 % for known
attacks types and 67% percent rate for unknown
attacks. Success rate was a bit higher in the real life
environment because there were some illegal field
values for some of the protocols’ headers made on
purpose or by mistake by the hackers which
determined the anomaly component to react.

5. CONCLUSIONS

The adaptive firewall has a lot of visible advantages
compared with a rule based one. A rule base firewall
if is poorly configured shows almost no protection at
all, unlike a poorly configured adaptive one which
has a 60% protection rate even if it doesn’t contain
any patterns in the database.

Another aspect is that even if the rule based firewall
is excellent configured it can’t protect a host or a
network for attacks from persons we consider friends
at the time of rules definition and even worse it
cannot protect our public services for most types of
attacks.

An adaptive firewall protects a host or a network for
indirect attacks, too. If a person is trying a type of
attack he would probably try some other attack after
to discover the system vulnerability, but because he
was first detected, he will be filtered and he could not
try another type of attack on the system.

An adaptive firewall may have some disadvantages
because it could generate false alarms and filter
traffic it shouldn’t filter. Because of that a decision
should be made if the adaptive firewall should be
used in critical application systems.

Used in conjunction with a rule based firewall, an
adaptive firewall could be the best protection a
system can get against unwanted traffic.

REFERENCES

Debar, H., M. Becker and D. Siboni (1992). A neural
network component for an intrusion detection
system. In Proceedings of the 1992 IEEE
Computer Society Symposium on Research in
Computer Security and Privacy, 240-250

Fox, K. L.,R.R. Henning, J.H. Reed and R. Simonian
(1990). A neural network approach towards
intrusion detection. In Proceeding of the 13"
National Computer Security Conference, 125-
134

Frank, J. (1994). Artificial Intelligence and intrusion
detection: Current and future directions. In
Proceedings of the 17" National Computer
Security Conference

Goodall, J.R. (2006). Visualizing Network Traffic for
Intrusion Detection. Conference on Designing
Interactive Systems

Holland, N., J. Knight and S. Mestdagh (2007).
OpenBSD FAQ. In OpenBSD User Manual

Leung, K. and C. Leckie(2005). Unsupervised
Anomaly Detection in Network Intrusion
Detection Using Clusters. In ACSC 2005, 333-
342

Li,W. (2004). Using Genetic Algorithm for Network
Intrusion Detection. In Proceedings of the
United States Department of Energy Cyber
Security Group. Kansas City

Liao, Y. and V.R. Vemuri (2002). Using Text
Categorization Techniques for Intrusion
Detection. 11" USENIX Security Symposium.
San Francisco, CA

Mahoney, M.V. and P.K. Chan (2001). PHAD:
Pachet Header Anomaly Detection for
Identifying Hostile Network Traffic. In Florida
Tech. tehnical report CS-2001-4

Mukkamala, S., A.H. Sung and A. Abraham (2003).
Intrusion Detection Systems using Adaptive
Regression Splines

Ryan, J., M-J Lin and R. Mukkulainen (1998).
Intrusion Detection with Neural Networks. In
Advances in Neural Information Processing
Systems 10, 943-949

Wang, K. and S.J. Stolfo (2004). Anomalous
Payload-based Network Intrusion Detection.

