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Abstract: With the rapid growth of computer networks, security has become an essential 
aspect of all operating systems. Rules based firewalls are used to deny unwanted access, 
but those firewalls are vulnerable to unknown attack types missing from the rules 
database. This paper propose a different firewalling approach, using a firewall with 
dynamic rules set altering possibility and an intrusion detection system which combines a 
misuse detection component, an anomaly detection component and a log analysis 
component.  
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1. INTRODUCTION 

 
There are some well known advantages in having a 
computer connected to the Internet, but there are 
some drawbacks too, because the highly connected 
computing world provides malicious users with the 
necessarily means for their destructive purposes. One 
tool for preventing unauthorized access to a host or a 
network is the firewall. Most firewalls have a user 
defined rules set which is loaded when the firewall is 
activated. Based on those rules, a firewall can deny, 
allow or proxy the network traffic. Even with a good 
rule set, the system can be vulnerable to unknown or 
unlisted attack types. Some firewalls permit a user 
intervention, when an unknown situation occurs and 
ask the system administrator for a decision, but this 
approach is almost in all situations unacceptable. 
      
This paper proposes a different approach, an adaptive 
firewall, where new rules are permanently added or 
removed based on the decisions made by an intrusion 
detection component.  
 
Intrusion detection schemes based on traffic analysis 
can be divided in two categories: misuse and 
anomaly detection schemes.  

The misuse method relies on a set of labeled data, a 
traffic pattern for each different type of attack, upon 
which the learning algorithm is trained. This method 
is incapable of detecting new and undocumented 
types of attack, but it is very efficient for the ones it 
knows. 
 
The anomaly method builds databases of normal 
traffic data and then tries to detect any anomaly 
related to this data. For the training part this method 
needs a set of normal data, without any trace of 
attack traffic, because the model may not detect this 
attack type in the future. 
 
The anomaly detection technique relies upon two 
axioms: “The majority of the network connections 
are normal traffic. Only X% of traffic is malicious”. 
(Leung and Leckie, 1994) and “The attack traffic is 
statistically different from normal traffic” (Leung and 
Leckie, 1994). 

Attacks fall into four categories: probing – is a class 
of attacks where an attacker scans a network to 
gather information or find known vulnerabilities. An 
attacker with a map of machines and services that are 
available on the network can use the information to 
look for exploits; denial of service – is a class of 
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Table 1. Misuse component detection rate for some 
randomly chosen attacks 

 
Attack Description Det. 

rate
apache2 DOS, HTTP overflow in 

apache web server 
1/1 

arppoison DOS, spoofed ARP with 
bad IP/Ethernet map 

3/3 

bruteforceftp R2L, FTP password 
guessing 

50/50 

bruteforcetelnet R2L, telnet password 
guessing 

40/40 

bruteforceroot  U2R,root password 
guessing inside a ssh 
session 

0/40 

ipsweep Probe, tests for valid IP 
addresses 

10/10 

mailbomb DOS, mail server flood  
named R2L, DNS buffer 

overflow 
2/2 

neptune DOS, SYN Flood  3/3 
nmap Probe, tests for listening 

ports 
48/50 

pod DoS, oversized IP 
packet 

5/5 

sendmail R2L, SMTP buffer 
overflow 

3/3 

smurf DOS, distributed ICMP 
echo reply flood 

5/5 

teardrop  DOS, overlapping IP 
fragments 

4/4 

udpstorm DOS, echo/charge loop 
using spoofed request 

2/2 

 
Table 2. Misuse component detection rate for some 

randomly chosen attacks 
 
Attack Description Det. 

Rate 
apache2 DOS, HTTP overflow in 

apache web server 
0/1 

arppoison DOS, spoofed ARP with 
bad IP/Ethernet map 

0/3 

bruteforceftp R2L, FTP password 
guessing 

50/50 

bruteforcetelnet R2L, telnet password 
guessing 

40/40 

bruteforceroot  U2R,root password 
guessing inside a ssh 
session 

40/40 

ipsweep Probe, tests for valid IP 
addresses 

0/10 

mailbomb DOS, mail server flood  
named R2L, DNS buffer 

overflow 
0/2 

neptune DOS, SYN Flood  0/3 
nmap Probe, tests for listening 

ports 
0/50 

pod DoS, oversized IP 
packet 

0/5 

 

Table 2 contains the results for the log analysis 
component.  Because this component doesn’t analyze 
traffic but the system logs, it cannot react to 
unlogged attack events as we can see from table 2.  
 
This component comes as an add-on for the two 
traffic related detection components, but it is very 
useful for attacks like bruteforceroot in a ssh tunnel, 
attacks transparent for the other components.  
 
For an operation system with a good log process this 
component has a very important role in the intrusion 
detection. 
 
The anomaly detection component results are 
presented in Table 3. As we can see, it has a success 
rate of 61 % in finding attacks.  
 
The anomaly detection component injected some 
false alarms into the system which could lead to 
normal traffic filter. The number of false alarms was 
very low, only a few per day. This is something we 
have to consider acceptable for the system in order to 
use the adaptive firewall.     
 
The computational need for our components was 
very low. In our case on dual processor systems the 
CPU use was under 0,1 %.   
 
Table 3. Anomaly component detection rate for some 

randomly chosen attacks 
 
Attack Description Det. 

Rate 
apache2 DOS, HTTP overflow in 

apache web server 
1/4 

arppoison DOS, spoofed ARP with 
bad IP/Ethernet map 

2/3 

bruteforceftp R2L, FTP password 
guessing 

47/50 

bruteforcetelnet R2L, telnet password 
guessing 

36/40 

bruteforceroot  U2R,root password 
guessing inside a ssh s. 

2/40 

ipsweep Probe, tests for valid IP 
addresses 

10/10 

mailbomb DOS, mail server flood  
named R2L, DNS buffer 

overflow 
2/2 

neptune DOS, SYN Flood  2/3 
nmap Probe, tests for listening 

ports 
25/50 

pod DOS, oversized IP 
packet 

1/5 

sendmail R2L, SMTP buffer 
overflow 

1/3 

smurf DOS, distributed ICMP 
echo reply flood 

2/5 

teardrop  DOS, overlapping IP 
fragments 

1/4 

udpstorm DOS, echo/charge loop 
using spoofed request 

2/2 



 
Table 4. Adaptive firewall detection rate for real time 

known attacks  
 
Attack Description Det. 

Rate 
apache2 DOS, HTTP overflow in 

apache web server 
4/4 

arppoison DOS, spoofed ARP with 
bad IP/Ethernet map 

3/3 

bruteforceftp R2L, FTP password 
guessing 

5/5 

bruteforcetelnet R2L, telnet password 
guessing 

4/4 

bruteforceroot  U2R,root password 
guessing inside a ssh 
session 

4/4 

ipsweep Probe, tests for valid IP 
addresses 

1/1 

mailbomb DOS, mail server flood  
named R2L, DNS buffer 

overflow 
2/2 

neptune DOS, SYN Flood  3/3 
nmap Probe, tests for listening 

ports 
5/5 

pod DOS, oversized IP 
packet 

3/3 

sendmail R2L, SMTP buffer 
overflow 

3/3 

smurf DOS, distributed ICMP 
echo reply flood 

5/5 

teardrop  DOS, overlapping IP 
fragments 

4/4 

udpstorm DOS, echo/charge loop 
using spoofed request 

2/2 

 
Testing the adaptive firewall in the real time 
environment had a success rate of 100 % for known 
attacks types and 67% percent rate for unknown 
attacks. Success rate was a bit higher in the real life 
environment because there were some illegal field 
values for some of the protocols’ headers made on 
purpose or by mistake by the hackers which 
determined the anomaly component to react. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 5. CONCLUSIONS 

 
The adaptive firewall has a lot of visible advantages 
compared with a rule based one. A rule base firewall 
if is poorly configured shows almost no protection at 
all, unlike a poorly configured adaptive one which 
has a 60% protection rate even if it doesn’t contain 
any patterns in the database.  
 
Another aspect is that even if the rule based firewall 
is excellent configured it can’t protect a host or a 
network for attacks from persons we consider friends 
at the time of rules definition and even worse it 
cannot protect our public services for most types of 
attacks.  
 
An adaptive firewall protects a host or a network for 
indirect attacks, too. If a person is trying a type of 
attack he would probably try some other attack after 
to discover the system vulnerability, but because he 
was first detected, he will be filtered and he could not 
try another type of attack on the system. 
  
An adaptive firewall may have some disadvantages 
because it could generate false alarms and filter 
traffic it shouldn’t filter. Because of that a decision 
should be made if the adaptive firewall should be 
used in critical application systems. 
 
Used in conjunction with a rule based firewall, an 
adaptive firewall could be the best protection a 
system can get against unwanted traffic. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



REFERENCES 
 
Debar, H., M. Becker and D. Siboni (1992). A neural 

network component for an intrusion detection 
system. In Proceedings of the 1992 IEEE 
Computer Society Symposium on Research in 
Computer Security and Privacy, 240-250 

Fox, K. L.,R.R. Henning, J.H. Reed and R. Simonian 
 (1990). A neural network approach towards 
intrusion detection. In  Proceeding of the 13th 
National Computer Security Conference, 125-
134 

Frank, J. (1994). Artificial Intelligence and intrusion 
detection: Current and future directions. In 
Proceedings of the 17th National Computer 
Security Conference  

Goodall, J.R. (2006). Visualizing Network Traffic for 
Intrusion Detection. Conference on Designing 
Interactive Systems 

Holland, N., J. Knight and S. Mestdagh (2007). 
 OpenBSD FAQ. In OpenBSD User Manual 
Leung, K. and C. Leckie(2005). Unsupervised 

Anomaly Detection in Network Intrusion 
Detection Using Clusters. In ACSC 2005, 333-
342 

Li,W. (2004). Using Genetic Algorithm for Network 
Intrusion Detection. In Proceedings of the 
United States Department of Energy Cyber 
Security Group. Kansas City 

Liao, Y. and V.R. Vemuri (2002). Using Text 
Categorization  Techniques for Intrusion 
Detection. 11th USENIX Security Symposium. 
San Francisco, CA 

Mahoney, M.V. and P.K. Chan (2001). PHAD: 
Pachet Header Anomaly Detection for 
Identifying Hostile Network Traffic. In Florida 
Tech. tehnical report CS-2001-4 

Mukkamala , S. , A.H. Sung and A. Abraham (2003). 
Intrusion Detection Systems using Adaptive 
Regression Splines 

Ryan, J., M-J Lin and R. Mukkulainen (1998). 
Intrusion Detection with Neural Networks. In 
Advances in Neural Information Processing 
Systems 10, 943-949 

Wang, K. and S.J. Stolfo (2004). Anomalous 
Payload-based Network Intrusion Detection. 

 


