

TOWARDS VERTICAL FRAGMENTATION IN DISTRIBUTED DATABASES

Adrian Runceanu

University Constantin Brâncuşi Târgu-Jiu, adrian_r@utgjiu.ro

Abstract. The design of distributed database is an optimization problem and the

resolution of several sub problems as data fragmentation (horizontal, vertical, and

hybrid), data allocation (with or without redundancy), optimization and allocation of

operations (request transformation, selection of the best execution strategy, and allocation

of operations to sites). There are some different approaches to solve each problem, so this

means that the design of the distributed databases is become hard enough. There are

many researches connected to the dates fragmentation and they are presented both in the

case of relational database and in the case of object-oriented database. In this paper is

presented the implementation of a heuristic algorithm conceived before that uses an

objective function who takes over information about the administrated dates in a

distributed database and it evaluates all the scheme of the database vertical

fragmentation.

Keywords: vertical fragmentation, distributed databases.

1. INTRODUCTION IN VERTICAL

FRAGMENTATION OF DATABASES

There exist three fragmentation types: vertical,

horizontal and hybrid. Vertical fragmentation

consists of subdividing a relation into sub relations

that are projections of the original relation according

to a subset of attributes. The horizontal fragmentation

divides a relation into subsets of tuples based on

selection operations. The hybrid fragmentation

consists of dividing a relation horizontally, and then

splitting vertically each of the obtained horizontal

fragments or vice-versa.

Vertical fragmentation is used in order to increase

transaction performance. The more obtained

fragments are close to transaction requirements, the

more the system is efficient. The ideal case occurs

when each transaction matches exactly a fragment,

i.e. it needs only this fragment. If some attributes are

always used together, the fragmentation process is

trivial. However, in reality applications are rarely

faced with such trivial cases. For relations having

tens of attributes, it is necessary to develop

systematic approaches for vertical partitioning. If a

relation has m attributes, it can be partitioned

following B(m) different ways, where B(m) is the m
th

Bell number which is almost m
m
 (Hammer et al.,

1979).

Since the beginning of the 80’s, many works have

adressed the database vertical partitioning problem.

(Hoffer and Severance, 1975) have developed the

attribute affinity concept. This metric measures the

frequency of accesing simultaneously a couple of

attributes. The attributes having high affinity are

grouped together by using the Bond Energy

Algorithm developed by (Mc Cormick et al.. 1975).

(Hammer and Niamir, 1979) have proposed a

heuristic where the input is a set of blocks

corresponding each one to an attribute. This is the

initial candidate partition. At each step of the search,

several modifications of the partitions are generated

and then submitted to a cost evaluator. If one of the

modified partitions becomes the current candidate

partition and the search continues until no

modification is possible. Modifying a partition may

be obtained in two different ways: by grouping two

blocks or by regrouping an attribute i.e. by removing

it from one bloc and inserting it into another one.

(Navathe, et al., 1984) extend the work of (Hoffer

and Severance, 1975). The authors use an attribute

affinity matrix that they order by using Bond Energy

Algorithm as proposed in (Hoffer and Severance,

1975). However, determining the vertical fragments

is done automatically, whereas it was let the subjectif

judgement of the designer in (Hoffer and Severance,

1975). There are two steps in the partitioning

algorithms. In the first step, the fragmentation is

obtained by appying iteratively a binary partitioninf

algorithm. At this step, no cost factor is considered.

At second step, estimations of cost reflecting the

physical environmemt, are included in order to

optimise the initial fragments. The algorithm

complexity is O(n
2
logn), where n is number of

attributes.

(Cornell and Yu 1987) proposed a vertical

partitioning algorithm which minimizes the number

of disk accesses. The algorithm is based on integer

programming methods. The partititoning of a relation

requires the knowledge of several parameters

concerning the relation (length, selectivity and

number of attributes) and transaction types and

behaviour (their frequency and the attributes they

access).

(Ceri, et al. 1989) propose two tools for vertical

fragmentation: “DIVIDE” and “CONQUER”. The

tool “DIVIDE” performs only data fragmentation and

allocation; it implements the partitioning algorithm

proposed in (Navathe, et al., 1984). The tool

“CONQUER”, in addition to data fragmentation and

allocation, ensures the optimisation and allocation of

operations.

Navathe and Ra proposed in 1989 a graphical

tehnique of partitioning. The attibute affinity matrix

is considered as a complete graph where nodes

represent attibutes and edges’ weights represent the

affinty values. The algorithm, by successively adding

edges, generates all the fragments in one iteration by

considering a cycle as a fragment. The algorithm has

a complexity of O(n
2
), where n is number of

attributes, and has the advantage of not using an

objective function.

(Lin et al. 1993) extend the work of (Navathe and Ra,

1989) on graphical partitioning. The input to the

algorithm is the affinity graph. They proposed searching

a subgraph of at lest two nodes for which affinity values

are greater than those of each incident edge.

(Chakravarthy, et al. 1994) have develop a partition

evaluator which evaluates the partition quality by

using two costs: the access cost to the irrelevant local

attributes (present on the execution site of the

transaction but not used by the transaction), and the

access cost to the irrelevant remote attributes (not

present on the execution site of the transaction but

necesary for its execution).

Several authors have approached the generalization

of fragmentation techniques to complex value and

object oriented data models. For instance, horizontal

fragmentation is discussed in (Bellatreche 2000,

Karlapalem and Simonet 2000, Ezeife and Barker

1995, Ma 2003, Schewe 2002), and vertical

fragmentation in (Chinchwadkar and Goh 1999,

Ezeife and Barker 1998, Malinowski and

Chakravarthy 1997, Schewe 2002).

2. STRUCTURE OF THE PAPER

In this paper we present the implementation of the

partition evaluator which was describe in [CMV94].

We delimit our discussion to one of the data

fragmentation problems, namely the vertical

partitioning problem. Vertical Partitioning (also

called attribute partitioning) is a technique that is

used during the design of a database to improve the

performance of transactions. In vertical partitioning,

attributes of a relation R are clustered into non-

overlapping groups and the relation R is projected

into fragment relations according to these attribute

groups. In distributed database systems, these

fragments are allocated among the different sites.

Thus the objective of vertical partitioning is to create

vertical fragments of a relation so as to minimize the

cost of accessing data items during transaction

processing. If the fragments closely match the

requirements of the set of transactions provided, then

the transaction processing cost could be minimized.

Vertical partitioning also has its use in partitioning

individual files in centralized databases, and dividing

data among different levels of memory hierarchies

etc. In the case of distributed database design, trans-

action processing cost is minimized by increasing the

local processing of transactions (at a site) as well as

by reducing the amount of accesses to data items that

are not local. The aim of vertical partitioning

technique (and in general data partitioning

techniques) is to find a partitioning scheme which

would satisfy the above objective.

3. CONTRIBUTION

In this paper we are using the approach of

formulating an objective function (named Partition

Evaluator) before developing (heuristic) algorithms

for the partitioning problem. This approach enables

us to study the properties of algorithms with respect

to an agreed upon objective function, and also to

compare different algorithms for "goodness" using

the same criteria. The objective function formulated

in this paper is a step in this direction. Moreover, the

objective function derived in this paper can be easily

extended to include additional information (e. g.,

query types - retrieval/update, allocation information

about the partitions, remote processing cost, and the

transaction usage pattern at any particular site).

4. DEFINITIONS AND NOTATIONS

A partition (scheme) is a division of attributes of a

relation into vertical fragments in which for any two

fragments, the set of attributes of one is non-

overlapping with the set of attributes of another. For

example, the partition {(1,3) (2,4) (5)} defines a

collection of fragments in which attributes 1 and 3

are in one fragment, 2 and 4 are in another and 5 is in

a separate fragment. The following are used in the

derivation of the Partition Evaluator.

n: Total number of attributes in a relation that is

being partitioned.

T: Total number of transactions that are under

consideration.

qt : Frequency of transaction t for t = l , 2 , . . . , T .

M : Total number of fragments of a partition

ni : Number of attributes in fragment i
r

iktn : Total number of attributes that are in fragment k

accessed remotely with respect to fragment i by

transaction t.
i

tjf : Frequency of transaction t accessing attribute j

in fragment i. Note that
i

tjf is either 0 or qt.

Aij : Attribute Vector for attribute j in fragment i. t-th

component of this vector is
i

tjf .

Ritk : Set of relevant attributes in fragment k accessed

remotely with respect to fragment i by transaction t;

these are attributes not in fragment i but needed by t.

| Ritk | : Number of relevant attributes in fragment k

accessed remotely with respect to fragment i by

transaction t.

Some algorithms such as Bond Energy (Hoffer and

Severance, 1975), and (Navathe and Ra, 1989), use

affinity matrix as the input. The attribute affinity is a

measure of an imaginary bond between a pair of

attributes. Because only a pair of attributes is

involved, this measure does not reflect the closeness

or affinity when more than two attributes are

involved. Hence the algorithms which use attribute

affinity matrix are using a measure (that is an ad hoc

extrapolation of pair wise affinity to cluster affinity)

that has no bearing on the affinity as measured with

respect to the entire cluster. As a consequence, we

believe, it was difficult to show or even characterize

affinity values for the resulting clusters having more

than two attributes.

As we wanted to obtain a general objective function

and a criterion for describing affinity value for

clusters of different sizes, our approach does not

assume an attribute affinity matrix. The input model

that we consider is a matrix which consists of

attributes (columns) and the transactions (rows) with

the frequency of access to the attributes for each

transaction, as the values in the matrix. With this

input model we overcome the limitations that are

inherent to approaches based on attribute affinity

matrix.

The objective function used by one algorithm is not

suitable for evaluating the "goodness" of other

algorithms. Thus we do not have a common objective

function to compare and evaluate the results of these

partitioning algorithms, or in general evaluate the

"goodness" of a particular partitioning scheme.

Hence we need a partition Evaluator to compare and

evaluate different algorithms that use the same input

in the database design process. Since attribute usage

matrix is the most commonly used input available

during the initial design stage, we first design an

Evaluator which can be used to evaluate the

"goodness" of partitions arrived at using this input.

This Partition Evaluator can be used as a basis for

developing algorithms to create fragments of a

relation. With this approach, there is hope that

admissibility aspects of algorithms can be shown. In

addition, this Partition Evaluator has the flexibility to

incorporate other information, such as type of queries

(retrieval/updates), allocation information about the

partitions, remote processing cost (transmission cost)

and the transaction usage pattern at any particular

site.

In any practical database application, a transaction

does not usually require all the attributes of the tuples

of a relation being retrieved during the processing of

the transaction. When a relation is vertically divided

into data fragments, the attributes stored in a data

fragment that are irrelevant (i.e., not accessed by the

transaction) with respect to a transaction, add to the

retrieval and processing cost, especially when the

number of tuples involved in the relation is very

large. In a centralized database system with memory

hierarchy, this will lead to too many accesses to the

secondary storage. In a distributed database

management system, when the relevant attributes

(i.e., attributes accessed by a transaction) are in

different data fragments and allocated to different

sites, there is an additional cost due to remote access

of data. Thus one of the desirable characteristics of a

distributed database management systems that we

wish to achieve through partitioning is the local

accessibility at any site. In other words, each site

must be able to process the transactions locally with

minimal access to data located at remote sites.

4.1. Irrelevant local attribute access cost

For the first component we use square-error criterion

as it was presented in Jain A. and Dubes R.. (1988).

The general objective is to obtain that partition

which, for a fixed number of clusters, minimizes the

square-error.

Let us assume that n attributes have been partitioned

into M fragments (P1, P2, …, Pm) with ni attributes in

each fragment. Thus .
1

nn
M

i i =∑ =
 The mean vector

Vi for fragment i is defined as follows.

This mean vector represents an average

access pattern of the transactions over all attributes of

fragment i. For an attribute vector A8J, (Aij — Vi) is

called the "difference vector" for attribute j in

fragment i. The square-error for the fragment Pi - is

the sum of the squares of the lengths of the difference

vectors of all the attributes in fragment i. It is given

by

 ∑
=

≤<−−=

in

j

iij

T

iiji MiVAVAe
1

2 0)()((3)

If Aij = Vi then ei
2
 will be zero. This will occur for the

trivial case when there is a single attribute in each

fragment or for the case when all the attribute in each

fragment are relevant to all the transactions that

access that fragment. It is the latter case that we are

interested in and to avoid the former case, we will

use the second component.

The square-error for the entire partition scheme

containing M fragments is given by

 ∑
=

=

M

i

iM eE
1

22
 (4)

4.2. Relevant Remote Attribute Access Cost

Now we will include the second component which

would compute a penalty factor that computes the

function. Given a set of partitions, for each

transaction running on a partition compute the ratio

of the number of remote attributes to be accessed to

the total number of attributes in each of the remote

partitions.

This is summed over all the partitions and over all

transactions giving the following equation. The

second term is given by:

 ∑ ∑
= ≠

= 







∆=

T

t ik
r

itk

itk

itkt

M

iR
n

R
RqE

1

2

1

2 * (5)

Here
2

∆ is an operator that is either an average,

minimum or maximum over all i. These different

choices of the operator give rise to average,

optimistic and pessimistic estimates of the remote

access cost. If specific information is available

regarding transaction execution strategies, then we

can determine for each transaction t, the remote

fragments accessed by the transaction and the remote

access cost can be refined accordingly. In our

experimental investigation, we use the optimistic

estimate for illustration.

Partition Evaluator (PE) function is given by:

 22

RM EEPE += (6)

5. ANALYSIS OF THE PARTITION EVALUATOR

The final form of Partition Evaluator is given in

equation 6. For analize and testing evaluator

behavior, we implement an C++ program who

produce all possible combinations of attribute with an

number of fragments. We test this program in three

cases: case 1 - a 10 attributes and 8 transactions

matrix; case 2 - a 5 attributes and 5 transactions, and

case 3 – a 6 attributes and 4 transactions (1 to 10

fragments for case 1, 1 to 5 fragments for case 2, 1

to 4 fragments for case 3) partition evaluator was

computed, and for minimum values, partitions

scheme was stored and write.

Program we used is composed from 2 algorithms,

one (called PE algorithm) for computed value on a

given partition scheme and an number of fragments,

and the other algorithm (called GEN_PE algorithm)

computed the minimal value of the PE from all

partition schemes generated in a backtracking mode.

The algorithm on which base we implemented the

evaluator of parts is presented below.

The outgoing data consists of the value for the local

cost of access at irrelevant local attribute cost E
2
M,,

the access cost on the distance of the relevant

attributes E
2
R, respective the value of the

fragmentation evaluator - EP

First we implemented the algorithm EP based on the

formula from equation 6 that calculates the value of

EP, for a given fragmentation scheme so we used an

entrance date: the matrix used for attributes - A; the

lots of fragments on which it calculated the value of

EP, the relation -R.

Algorithm PE
Input: A = attribute usage matrix;

 R = Relation ; F = fragments set

Output: E
2
M: irrelevant local attribute cost;

 E
2
R: relevant remote attribute cost;

 EP : partition evaluator value

Begin

 E
2
M=0

 for i from 1 to number_of_fragments do

 begin
 ei=0

 for j from 1 to number of attributes from i

fragment do

 { Xij – Vi – mean vector for j attribute form i

fragment }

 ei = ei + (Xij-Vi)
T
*(Xij-Vi)

 end_for
 E

2
M = E

2
M + ei

001515155

00101004

404000403

1501515152

303003001

54321\

T

T

T

T

T

AAAAAAttributesnsTransactio

end_for

E
2
R=0

for t from 1 to number of transactions do

begin

 minim =maxint

 for i from 1 to number of fragments do

 for k from 1 to number of fragments do

 begin

 if k ≠ i then

 begin

{ Ritk – set of relevant attributes in fragment k

accessed remotely with respect to fragment i by

transaction t }

{ n
remote

itk – number of relevant in fragment k

accessed remotely with respect to fragment i by

transaction t }

 if exists attribute in matrix A who is from

k fragment then

 E
2
R= E

2
R+ (f

t
k)

2
 * | Rit | * | Rit | / n

remote
itk)

 end_if
 if E

2
R min < minim then

 minim = E
2

R min

 end_if

 end_for

 E
2
R = E

2
R + E

2
R min

 end_for

end_for

EP = E
2
M + E

2
R

End.{Algorithm PE}

The second algoritm is presented below:

Algorithm GEN_PE
Input: A = attribute usage matrix;

Output : lowest PE value

 partition scheme coresponding to the

lowest EP value

Begin

 minim=maxint

 for frag from 1 to number_of_fragments do

 { one partition scheme is generation for frag }

 pe = call PE(A, frag, F)

 if pe<minim then

 minim = pe

 number_fragment = frag

 G = F{set G is one copy of set F for

corresponding value of minim}

 end_if

 end_for

 write number_fragment, set G and PE value

End. {Algorithm GEN_PE}

For the execution of one transaction, we know that if

a transaction could be run at one fragment and that

fragment haven’t one single attribute accessed by that

transaction, then transaction not be run on that

fragment.

For the first test we used a matrice of attributes use

with ten attributes accesed by eight transactions.

1515001501515008

0250000025007

0000025000256

025252502502525255

00353500003504

25000250250003

050500000505002

00025025000251

10987654321\

T

T

T

T

T

T

T

T

AttributesnsTranzactio

We present in Figure 1 the values for each number of

fragments and the values for
2

ME ,
2

RE and EP .

The total number of fragments evaluated was

115975. Optimal value (minimum) is obtained for 3

fragments – fragment I (1,5,7), fragment II (2,3,8,9)

and fragment III (4,6,10).

The program used to generate all the combinations of

ten attributes accessed by eight transactions offers

three solutions (for five fragments) and two solutions

(for eight fragments), having the same value for EP.

However, the project of distributed database can

choose which scheme of partition wishes to use it.

Fig. 1 Results of the first test

For the second test we used a matrice of attributes

use with five attributes accesed by five transactions.

We present below values for each number of

fragments together with the accordingly value opting

for
2

ME ,
2

RE and EP .We can notice that for a

number of two fragments - the fragment I (1,4,5) and

the fragment II (2,3) we obtain the lowest value for

EP .

For the third test we used a matrice of attributes use

with six attributes accesed by four transactions.

Number of

fragments
Partition scheme

2

ME

values

2

RE

values

EP
values

1 (1,2,3,4,5) 3477 0 3477

2 (1,4,5) (2,3) 1369 770 2139

3 (1,4,5) (2) (3) 791 1470 2261

4 (1) (2) (3) (4,5) 144 3192 3336

5 (1) (2) (3) (4) (5) 0 5836 5836

Fig. 2. Results of the second test

Number

of

fragments

Partition scheme

2

ME

values

2

RE

values

EP
values

1 (1,2,3,4,5,6,7,8,9,10) 15085 0 15085

2 (1,4,5,6,7,10) (2,3,8,9) 7091 1366 8457

3 (1,5,7) (2,3,8,9) (4,6,10) 3312 2508 5820

4 (1,5) (2,3,8,9) (4,6,10) (7) 2078 3950 6028

5
(1,5) (2,3,8,9) (4,6) (7) (10)

(1,5) (2,3,8,9) (4,10) (6) (7)

(1,5) (2,3,8,9) (4) (6,10) (7)
2078 4800 6878

6 (1,5) (2,3,8,9) (4) (6) (7) (10) 2078 5650 7728

7 (1) (2,3,8,9) (4) (5) (6) (7) (10) 2078 6900 8978

8
(1) (2,8,9) (3) (4) (5) (6) (7) (10)

(1) (2,3,8) (4) (5) (6) (7) (9) (10)
1386 10308 11694

9 (1) (2,8) (3) (4) (5) (6) (7) (9) (10) 0 14000 14000

10 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 0 18350 18350

We present below the values for each number of

fragments together with the accordingly value opting

for
2

ME ,
2

RE and EP .

No. of

frag-

ments

Partition scheme
2

ME

values

2

RE

values

EP
values

1 (1,2,3,4,5,6) 24895 0 24895

2 (1,4) (2,3,5,6) 7565 55 7620

3 (1) (2,3,5,6) (4) 7565 276 7841

4 (1) (2) (3,5,6) (4) 5063 11336 16399

5 (1) (2) (3,6) (5) (4) 0 22492 22492

6 (1) (2) (3) (4) (5) (6) 0 40913 40913

Fig. 3. Results of the third test

We can notice that for a number of two fragments -

the fragment I (1,4) and the fragment II (2,3,5,6) we

obtain the lowest value for EP .

6. CONCLUSIONS

In this paper it is presented a general approach of the

vertical fragmentation issue of the dates from a

distributed database. Using an objective function

used on the group models we obtained the

implementation of an evaluator of partitions that can

be use in the verification of some scheme of the dates

fragmentation. Using this evaluator it's easier to

project the heuristic algorithm or other nature for the

partition of databases.

REFERENCES

Bellatreche, L., Karlapalem, K. and Simonet A.,

(2000), ‘Algorithms and support for horizontal

class partitioning in object-oriented databases’,

Distributed and Parallel Databases 8(2), 155–

179.

Ceri S., Pernici S., and Weiderhold G. (1989)

Optimization Problems and Solution Methods in

the Design of Data distribution. Information

Sciences Vol. no. 3, p 261-272.

Chakravarthy S., Muthuraj R., Varadarajan R., and

Navathe S. (1994) An objective function for

vertically partitioning relations in distributed

databases and its analysis. In Distributed and

parallel databases, pages 183-207. Kluwer

Academic Publishers.

Chinchwadkar, G. S. and Goh, A. (1999), ‘An

overview of vertical partitioning in object

oriented databases’, The Computer Journal

42(1).

Cornell D., and Yu P. (1987) A Vertical Partitioning

Algorithm for Relational Databases. Proc. Third

International Conference on Data Engineering,

pp. 30-35.

Ezeife, C. I. and Barker, K. (1995), ‘A

comprehensive approach to horizontal class

fragmentation in a distributed object based

system’, Distributed and Parallel Databases

3(3), 247–272.

Ezeife, C. I. and Barker, K. (1998), ‘Distributed

object based design: Vertical fragmentation

of classes’, Distributed and Parallel

Databases 6(4), 317–350.

Hammer N. and Niamir B. (1979), A heuristic

aproach to attribute partitioning. In

Proceedings ACM SIGMOD Int. Conf. on

Management of Data, (Boston, Mass.),

ACM, New York.

Hoffer J. and Severance D.(1975) The Uses of

Cluster Analysis in Physical Database

Design In Proc. 1st International

Conference on VLDB, Framingham, MA

pp. 69 - 86.

Jain A. and Dubes R.. (1988) Algorithms for

clustering Data. Prentice Hall Advanced

Reference Series, Englewood Cliffs, NJ.

Lin X., Orlowska M., and Zhang Y.(1993) A graph

based cluster approach for vertical partitioning in

database design. Data an Knowlegde

Engineering, 11:151-169.

Ma, H. (2003), Distribution design in object

orienteddatabases, Master’s thesis, Massey

University.

Malinowski, E. and Chakravarthy, S. (1997),

Fragmentation techniques for distributing object-

oriented databases, in D. W. Embley & R. C.

Goldstein, eds, ‘Conceptual Modeling - ER ’97’,

Vol. 1331 of Lecture Notes in Computer

Science, Springer, pp. 347–360.

Navathe S., Ceri S., Wiederhold G., and Dou

J.(1984) Vertical Partitioning Algorithm for

Database Design ACM Transactions on

Database Systems, Vol. 9.

Navathe S. and Ra M. (1989) Vertical Partitioning

for Database Design: A Graphical

Algorithm. ACM SIGMOD, Portland.

Schewe, K.-D. (2002), Fragmentation of object

oriented and semi-structured data, in H.-M. Haav

& A. Kalja, eds, ‘Databases and Information

Systems II’, Kluwer Academic Publishers, pp. 1–

14.

Tamer O. and Valduriez P.. (1999) Principles of

Distributed Database Systems. Prentice Hall

Englewood Cliffs, Second Edition, New Jersey

07362.

