

USAGE OF DIGITAL PEN BASED DEVICES IN E-LEARNING

Adrian Neaţu, Dan Tuşaliu, Robert Popescu, Ecaterina Manole

University of Craiova, Faculty of Automation, Computers and Electronics,

Computer and Communications Engineering Department

Abstract: In this paper it is presented the possibility of usage of new tools in the learning

process. On one hand there is the hardware, the digital pen based devices, such as a tablet

PC, and on the other hand new applications able to facilitate the teachers or professors the

use of these devices. The goal is to give the possibility to add value (information) to

already existing electronic courses, thus improving explanation of concepts, student

involvement in the teaching process and also assimilation of knowledge.

Keywords: e-learning, tablet PC, digital pen, open source.

1. INTRODUCTION AND MOTIVATIONS

Tablet PCs represent a challenging new technology

that can offer multiple facilities. In the e-learning

environment, tablet PCs or other digital-pen based

equipments can allow for visible improvements

through development of active and collaborative

learning systems. These types of systems are

considered to be efficient and flexible from the

teaching point of view and have the tendency to

encourage the involvement of students in the

teaching act, as well as encouraging the student –

teacher interaction.

The vast majority of existing digital pen based

annotation systems, or other applications using

digital ink have been developed in the C#

programming language, utilizing the Microsoft.NET

framework. The novelty and the challenge in the

presented application is that it is developed using

only the Java technology.

Although controversial, the slide based presentations

present a series of advantages, such as: possibility of

preparing in advance the materials to be presented,

possibility of envisaging quality examples and

illustrations, ease of reuse and facilitation of distance

learning.

The main idea behind the application is to offer the

possibility to annotate presentation slides using a

digital pen. Unfortunately, the Java programming

language does not offer support for such

implementation, such that the solution adopted is to

use an intermediate stage, namely transform the

slides into images. Later, these images can be

annotated. For this, the graphical libraries found in

Java were used, which offer support for digital pen

stroke recognition.

Ultimately, the goal for a teacher is to progressively

annotate the images, also having the possibility of

organizing these images into projects, thus being able

to reconstruct the teaching process evolution.

Annotation will be done by means of a pen onto a

tablet PC or simply on any graphical tablet. The

teacher may modify the images by using handwriting

this way.

It is desired the maximization of the teaching process

efficiency, by trying to add in a natural way

supplemental information to electronic courses. This

information is added with the goal of better

explanation of concepts, more involvement of

students in the teaching process and therefore a better

assimilation of the presented knowledge.

For portability reasons, the application has been

developed entirely using the Java programming

language and a free integrated development

environment.

2. GENERAL PRESENTATION OF THE

APPLICATION

2.1 The interface

The graphical interface comprises the drawing area

or blackboard, where the actual annotation is

realized, based on a certain document or which can

be used as a board to edit the course.

Besides the working area one can find a menu

formed of the buttons File, Edit, View, Project and

About whose functionalities are later detailed.

In the left side there is the line selection menu, the

color menu and the buttons for the movie mode.

In the right side of the application window there is a

tree component, used to display the projects and their

components. Modifications can be applied with the

aid of the Add, Remove, Up and Down buttons.

Navigating the slides composing a project is possible

by means of the Previous and Next buttons, as

shown in the below figure.

Fig. 1. Main window. The drawing area, the menus:

upper and left menu, and the right panel

presenting the projects

Upper menu consists of the submenus File, Edit,

View, Project and About.
The File submenu implements mainly the classic

functions of any text editor: creating a new blank

page, loading an image, saving the image with a

certain extension and exiting the program.

The Edit button implements the undo function,

which is deleting the last annotation that is the

modification made in the interval from the moment

when the pen was pressed on the drawing area until it

is lifted from the drawing area.

View submenu implements the modality of

displaying the images, navigating through them in

the direct manner (Next Image) or indirect (Previous

Image) and also deleting an image. The order of the

slides in the project can also be modified. The slides

will be noted with “*” in order to keep track of the

unsaved changes.

Fig. 2. Main window. The View submenu is dropped,

the components of a project are listed on the right

side of the screen.

Project submenu administrates the working mode of

the project. New Project, Open Project, Save Project

and Add directory are implemented in it, also as Add

file or Delete File. In the Save Project function there

is a feature to choose which slides one wants to save,

as shown in the next figure.

In the Add directory function, a filter is added, in

order to import only one folder in a project.

Fig. 3. Saving different slides in a project. The select

all button will save all the slides, and the deselect

all will ignore any modification.

Line type represents the menu for choosing the

favorite line type. There can be used 5 different line

types.

Line colors implements the selection menu of the

favourite color. The More Colors button will open a

JcolorChooser to be able to choose more color on

RGB (Red, Green, Blue) or HSB (Hue, Saturation,

Brightness).

2.2 The implementation

The main window is an extension of JFrame from

javax.swing. On this window there is a panel from

JPanel where the other components are added. The

menu bar is a JMenuBar with the 5 menus added.

All these menus are implemented with JMenu

components.

Each menu has a list of options to select. The options

have been implemented with the aid of JMenuItem

component. Constructing this component implies an

option to select and ImageIcon object that has as

parameter the URL of the picture. The names of the

images are retained using Reflection from the

images directory of the application. The menu that

presents the width of the lines that are used to add

notes is made of a JLabel that has set the title to

“Line Type” and 5 JToggleButton buttons

customized to apply images on them for de 5 line

types. It is followed to activate the border of the

button when pressed, and the border should disappear

when other button is pressed. The menu for colors is

made of a JLabel with the title “Line Colors” and 16

JButton customized buttons for which there is a set

background with the most representative colors from

RGB. Pressing such a button will set the selected

color for drawing.

To select other colors, the JButton button More

Colors is used. By pressing it a JColorChooser will

be opened and the user can chose colors based on

HSB (Hue, Saturation, Brightness), or RGB (Red,

Green, Blue).

The drawing area is a JLabel. The class that

implements this component is ScrollablePicture. A

ScrollablePicture component is mainly a JLabel that

permits scrolling, by implementing the Scrollable

interface. The image on the JLabel will be setted as

follows:

- the image is loaded on the disc in an ImageIcon

object

- the object image will be extracted with the
getImage() method

- the Image object will be drawn on an object

member of BufferedImage. An antialising is used

for a better drawing quality.

- The BufferedImage object is set as icon for the

ScrollablePicture object.

There is also a control implemented by

MediaTracker class. So, the image will be shown

only if it has loaded completely from the hard disk,

else a blank image will be shown.

An undo operation is also implemented, by creating

an undo directory each time the ScrollablePicture

class is instantiated. In this folder, different stages of

the picture will be stored, in order to be able to iterate

between them, loading finally the one needed. The

name of the files in the undo directory will be the

timestamp of the system. At the beginning the

directory will hold only the initial image. It is used

the hard disk saving to save the virtual memory.

After each intermediary saving, the directory is

emptied, and after exiting the application, the

directory is erased from the disk. So there will be a

directory for each session. The directory will be

placed at the same path as the original image, and

will have its name. This method also detects the pen

when not being on the tablet, and saves the

intermediary image in the undo directory.

The graphical part of the project is implemented with

a JList in which are added elements the name of the

application and the images.

Behind the logical part of the application there are 3

classes:

- Project class extending AbstractListModel from

javax.swing where the organizing of the project is

realized. Three homolog list are used: one to retain

the paths to the pictures in the project, one for the

names of these images, and one containing

ScrollablePicture objects:

 paths = new ArrayList<String>();

 names = new ArrayList<String>();

 pictures = new ArrayList<ScrollablePicture>();

In the project will appear a list of the images’ names.

In this class are implemented the add file, delete file,

empty project, save and load project:

 public boolean add(Object object) {

 ………………
 }

 public void remove(int i) {

 ………………

 }

 public void clear(){

 ………………

 }

 public void readFile(){

 ……………

 }

 public void writeFile(){

 ………

 }

This class implements the moving of the files in the

project, on different positions:

 public void moveUp(int i){

 ……………
 }

 public void moveDown(int i){

 ……………

 }

and I is the index of the image in the list.

- CustomCellRenderer class will set the form for

the list of the project. This class implements

ListCellRenderer from javax.swing. The

elements are JLabel with an icon and names

attached, and the name will be the same as the

pictures name. There are two types of icons:

o One for the element of type project, Will contain

an icon and the name of the project

o One for the image type element. Will contain an

icon and the name of the image.

 projectIcon = new

 ImageIcon("./images/project.jpg");

 itemIcon = new

 ImageIcon("./images/plus.jpg");

In this class, the color is set, blue for background and

white for writing color, for a selected element, or

white background and black writing for a unselected

element.

- Selector class indicates the actions that are made

when an image is selected in the project. As

follows:

o If the current image is not in the project but was

modified after loading, and an image from the

project is selected, then a pop-up save window will

appear for the current iamge. If the user decides

not to save the image, the new selected image from

the project will take its place on the drawing area.

 if(window.getPathLabel().getText().equals("

") == false)

 {

int filenamePos =

window.getPathLabel().getText().lastIndexOf(Syste

m.getProperty("file.separator"));

ArrayList<String> fileNames = new

ArrayList<String>();

 fileNames.add(Utils.getName(window.getPathLa

bel().get Text().substring(filenamePos + 1)));

 ArrayList<String> paths = new

ArrayList<String>();

 paths.add(window.getPathLabel().getText());

//if saving is asked

 if(window.getPicture().isModified() == true)

 {

SaveWindow sw = new SaveWindow(window,

fileNames, paths, false, "Save file");

 sw.initComponents();

 }

//deleting undo files associated with this image

 Utils.removeDirectory(window.getPicture().getU

ndoFile());

 window.getPathLabel().setText("");

 }

o If the current image is in the project, and another

image in the project is selected, the second image

will be shown in the drawing area:

 window.setPicture(this.displayedPicture);

 window.drawWindow();

For the Movie Mode part there are utilized the

following 3 classes:

- MovieModeOptionsDialog extending JDialog

and interrogates the user about the way to use the

movie mode saving: by click or after some seconds

indicated by the user. By saving after a click, it is

understood saving by clicking the Capture

button.
- MovieModeListener implements saving the

images in movie mode. Whether it is click saving

or auto-saving, first a project for movie mode is

created. Second, a directory to save the pictures

resulted from movie mode. This directory will be

created in the same folder as the image selected for

movie mode and will have the image’s name.

o For click saving, each time the Capture button is

acted, the current state of the picture will be saved

in this directory, and will be named as follows:

projectName + currentNumber + "."+Utils.png

where currentNumber cand be between 0 and 1000

o for auto-saving, the class MovieModeAutoSaving

is used.

- MovieModeAutoSaving is actually a thread which

for a certain number of seconds given by the user

will save the current state of the picture.

 public void run()

 {

 Project p =

penWindow.getActiveProject();

 String path =

Utils.getName(p.getFile().getPath());

 File movieDir = new File(path);

 movieDir.mkdir();

 while(keepGoing)

 {

 String next =

getNextPictureName();

 Utils.saveTo(penWindow.getPicture(),

movieDir.getPath()+"\\"+next);

 p.add(movieDir.getPath()+"\\"+next);

 try{

 Thread.sleep(seconds *

1000);

 }

 catch(InterruptedException e)

 {

 System.err.println("Sleep

exception");

 }

 }

 }

Exiting the movie mode is realized by pressing the

Quit movie mode button.

3. USAGE INSTRUCTIONS

3.1 Project-oriented mode

This mode permits organizing files (these files

currently are pictures in any form of extension

known at the moment) in projects, for a better logical

structure and also for easier further access of the

application.

To create a project, File -> New Project has to be

selected. This option will create a new and empty

project.

For adding files in this application, it is followed the

following sequence of events:

- Project -> Add File to add only one file to the

project

- Project -> Add directory to add the contents of a

directory in the project

After the selection, the files added can be viewed in

the right side of the application window. By selecting

one file in the project, its content will be displayed in

the drawing area. In this way the user can add notes

to the specified file, as shown in Fig.1. Viewing files

on the drawing area.

 Fig. 4. Viewing files on the drawing area. This

feature offers to the user the possibility to see the

contents of files

In order to keep the file on the disc for further usage,

the Project -> Save Project option will be chosen.

Only in this way the project will be available in a

future work session. This option is shown in the

below figure.

Fig. 5. Saving a project. Using this feature the project

will be available for further usage.

It is also provided the feature to travel between the

file projects, compliant with the drawing area. The

traveling is possible using Next and Previous

buttons in the main windows of the application or in

the View -> Next Page and View -> Previous Page

options.

The user can also change the order of the files in the

project using Up and Down buttons.

When adding notes, the user has the undo possibility

by Edit -> Undo.

To open an older project, there is the Open Project

option in Project menu.

3.2 File-oriented mode

This mode permits changing a certain file loaded by

the user with the command File -> Load Image. In

the upper part of the window the absolute path of the

file will be displayed.

In this work mode the option File->Page Erase is

available, which will replace the drawing area with

an empty page.

After the user has finished adding notes, the saving

feature to save the modified file is made possible by

using:

- File -> Save image to save the file with the current

name

- File -> Save images to save the file with a

different name

The user also has the possibility to work in parallel

with these two modes, the project-oriented mode and

the file-oriented mode, as presented in Fig. 3. Parallel

usage of project and file – oriented modes.

Fig. 6. Parallel usage of project and file – oriented

modes. The file has been loaded in a project and

then saved within the project.

3.3 Movie mode

In this mode the user has the possibility to view the

evolution by modifying a file from the moment it was

open until it is saved, after making the modifications.

This actually means that a new project is associated

to each modified file, and in this project will be kept

as separate files (pictures), the intermediary states of

the file.

To enter movie mode, the Movie Mode button from

the main window is used. It will appear a dialog to

ask the user for the mode to save the intermediary

pictures:

- For a click (mainly the user decides what

intermediary states to be saved in the movie-mode

project; these states are saved with the button

Capture Image in the main window)

- Self-acting, for a number of seconds specified by

the user.
This option is shown below.

Fig. 7. Movie mode options. In this dialog box the

user selects the mode to save de states of the files

To exit movie mode the Quit movie mode button is

used.

Saving the movie-mode project is made as with a

usual project.

Movie-mode projects are thought to facilitate the

learning process by better distinguishing the phases

in which the concepts are presented.

REFERENCES

Bloch, J.and A. Wesley. (2002). Effective Java

Bruce, E. (2002). Thinking in Java, Prentice Hall Ptr.

Flanagan, D. (2001). Java in a Nutshell. Oreilly &

Associates Inc.

Marinacci, J. and C. Adamson (2005). Swing Hacks.

Oreilly & Associates Inc.

http://www.cs.usna.edu/~lmcdowel/pubs/fie2005.pdf

http://www.cs.washington.edu/homes/jonsu/ITICSE_

2004.pdf

http://www.cs.washington.edu/education/dl/presenter

/papers/2006/RA_SIGCSE_2006.pdf

http://www.cs.washington.edu/homes/fred/wace-

2003-pres.pdf

http://people.depauw.edu/dberque/ccsc_ne_2006_ber

que.pdf

http://people.csail.mit.edu/albert/pubs/2003-ashuang-

ugrad-thesis.pdf

http://www.formatex.org/micte2005/206.pdf

http://ils.unc.edu/annotation/publication/Fu_etal_ASI

ST05.pdf

http://csdl2.computer.org/comp/proceedings/hicss/19

99/0001/02/00012012.pdf

http://www.orcca.on.ca/PenMath/materials/papers/20

05-msc-pencontext.pdf

http://www.cs.washington.edu/homes/jonsu/CG_200

5.pdf

http://www.carle.ws/PACT.pdf

http://www.cs.clemson.edu/~pargas/tabletpc/PargasT

abletPCProposal.pdf

http://www.math.uaa.alaska.edu/~afkjm/papers/mock

-ccsc2004.pdf

http://www.cs.usna.edu/~lmcdowel/pubs/fie2005.pdf

