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Abstract: The purpose of this paper is to present a method elaborated in order to build the 

imagistic textural model of hepatocellular carcinoma, focused on the exhaustive set of 

textural features and the associated textural parameters. Methods like Bayesian Belief 

Networks and Decision Trees are used in order to learn and evaluate the relevance of the 

features. Thus, the relevant textural features are selected and their specific characteristics 

are determined. The possibility of automatic recognition is also studied by applying 

classification on the textural features and by computing the recognition rates of various 

classifiers.  
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1. INTRODUCTION 
 

Liver chronic diseases constitute an important public 

health issue. The evolution of diffuse liver diseases is 

variable, but it has generally long term.  Whatever the 

nature of the liver aggression, it seems to follow a 

pattern characterised by the successive stages: 

inflammation (at the beginning), necrosis, fibrosis, 

regeneration (cirrhosis), dysplasia, and hepatocellular 

carcinoma (at the end). Hepatocellular carcinoma 

(HCC) is the most frequent malignant liver tumor, so 

we study in this paper the possibilities to characterize 

it. The fundamental visual properties of malignant 

liver tumors, and also of hepatocellular carcinoma, 

which can be noticed by human eye from ultrasound 

images, are: the irregular-shaped, often vague 

contours, the complex structure of vessels and the 

heterogeneity of the tissue, but these properties are 

not enough in order to do an accurate diagnosis, so a 

more subtle analysis is required. Computerized 

methods, which extract information from medical 

images, are being widely studied nowadays in order to 

replace the old methods through a new, non-invasive 

technology. Thus, virtual biopsy tends to replace the 

old, traditional one, and this requires the development of 

adequate, computer-vision based methods, in order to 

obtain an accurate imagistic model of the malignant 

tumors. Texture is a fundamental visual property which 

is essential especially in tissue characterization and in 

pathological structures recognition. Texture-based 

methods are implemented in association with classifiers 

in order to perform automatic tumor differentiation for 

various kinds of organs (Chikui et al., 2005), (Yoshida 

et al., 2003), (Madabhushi et al., 2005). However, the 

relevance of the textural features and their statistical 

values for malignant liver tumors are not determined 

systematically through scientific, specific, automatic 

methods. We aimed to do this in our research, by using 

the following learning-based methods: the Bayesian 

Belief Networks and the Decision Trees. The relevance 

of each textural feature and their statistical values for 

the class of HCC will be the specific parameters of the 

textural imagistic model for this class. The elaboration 

of the imagistic textural model of HCC required three 

phases: (1) the specification phase, consisting in the 

definition of the data models and steps used for model 

generation; (2) the model generation (implementation) 

phase and (3) the model validation phase. Concerning 



the model generation phase, two steps are necessary: an 

image analysis step, consisting in the computation of 

the textural features and in the identification of the set of 

relevant textural features; then a learning step, in which 

we obtain some specific features like the mean, the 

variance, the maximum, the minimum value of the 

textural features and their probability distribution. At 

the end, there is a validation phase, in which we 

evaluate the generated model. We aim, in this way, to 

put in evidence the fundamental imagistic, textural 

properties of the hepatocellular carcinoma and also to 

correlate them with its visual properties, perceived by 

the human eye. 

 
 

2. TUMORS ASPECT IN ULTRASOUND IMAGES 
 

In order to compare the results provided by the 

computer-vision based methods with the visual aspect 

of the hepatocellular carcinoma that can be noticed in 

ultrasound images, it is useful to know what the visual 

properties of the HCC are in its various evolution 

stages. Hepatocellular carcinoma (HCC) is one of the 

most frequent malignant tumors of liver (75% of the 

liver cancer cases). Other well known malignant liver 

tumors are hepatoblastoma (7%), cholan-

giocarcinoma and cystadenocarcinoma (6%). As we 

previously mentioned, HCC evolves from cirrhosis, 

after a restructuring phase at the end of which 

dysplasic nodules (future malignant tumors) result. In 

incipient phase, HCC appears like a small region 

having a different texture than the other parts of the 

tissue and a diameter of about 1.5 cm to 2 cm. In the 

case of an evolved HCC, the essential textural 

attribute is that of heterogeneity, due to the co-

existence of regions with necrosis and fibrosis, and of 

regions with active growths [13]. HCC is also 

characterized through a very complex structure of 

vessels. It can present one of the following forms: a 

clearly delimited, encephaloid form, a nodular 

multicentric form, or a diffuse form (Badea et al., 

2000). 

 

3. EXISTING METHODS FOR COMPUTER 

BASED TUMOR RECOGNITION    
 

Concerning the textural analysis of the malignant 

tumors, the goal is to extract imagistic features in or-

der to establish the differences of malignant tumors 

versus other types of tissues, independently of noise, 

artefacts, scale and orientation. Thus, methods like the 

Grey Levels Co-occurrence Matrix (GLCM) (Valckx 

et al., 1997) and its second order statistics, the Run 

Length Matrix parameters (Sujana et al., 1996), as 

well as multi-scale methods are widely used in the 

field of computer-based tumor recognition from 

biomedical images. In (Sujana et al., 1996) the 

authors compute the first order statistics (the mean 

grey level and the variance of grey levels),  the Gray 

Level Co-occurrence Matrix second order parameters 

and the Run-Length Matrix parameters which are 

used in association with an Artificial Neural Networks 

based classifier, as well as with a classifier based on 

Linear Discriminants. The accuracy obtained by using 

Linear Discriminants was 79.6%, while using neural 

networks, a recognition rate of 100% was obtained. 

Fractal-based methods are used in (Chikui et al., 

2005) in order to distinguish the salivary gland tumors 

from ultrasound images. Algorithms like 2D and 3D 

Box-Counting, respectively the Hurst coefficient 

method, are implemented in order to compute the 

fractal index. These methods proved to be useful in 

order to distinguish the malignant tumors from 

pleomorphic adenoma, the value of the fractal index 

being correlated with the tissue structure complexity. 

Wavelet transform was also implemented in order to 

analyze the values of the textural parameters at mul-

tiple resolutions. In (Yoshida et al., 2003) the goal 

was that of extracting, using the Wavelet transforms, 

some basic elements, having a well defined pattern of 

grey levels. The method provided good results 

concerning the differentiation between malignant and 

benign liver lesions, the accuracy, measured as the 

area under the ROC curve (Az) being approximately 

0.90. From the multi-resolution methods class, the 

Gabor transform was also implemented in 

(Madabhushi et al., 2005) and provided good results 

in combination with the GLCM second order 

parameters and the Bayesian classifier for prostate 

malignant tumor recognition from 3D MRI images. 
Thus, textural parameters were widely used and 

provided satisfying results for the purpose of 

malignant tumors recognition in the cases of various 

organs. Concerning the detection of hepatocellular 

carcinoma from ultrasound images, the relevance of 

the textural features, the correlation between them and 

their specific, statistical values were not studied yet. 

 

 

4. THE PROPOSED METHOD: THE IMAGISTIC 

TEXTURAL MODEL OF HCC    
 

The goal of our work is to present a method 

elaborated in order to build the imagistic textural 

model of HCC for the future purposes of semi-

automatic and automatic diagnosis. 

 

4.1. Definition and specifications for the imagistic 

textural model of HCC. 

 

Texture is an essential attribute in malignant tumors 

characterization and recognition. Based on this fact, 

our purpose is to build a textural imagistic model for 

HCC, in order to support the process of non-invasive, 

computer based semi-automatic and automatic 

diagnosis. This model will consist in the relevant 

textural features and the specific, statistical values of   

them, able to characterize the HCC with maximum 

accuracy.  

The imagistic textural model of HCC will be centred 

on the following parameters: 

� The relevance of each textural feature in HCC 

characterization, determined by using the Bayesian 

Belief Networks method during the first filtering 



stage, then the Decision Tree method at the second 

level. 

� The maximum, minimum and mean values of the 

textural features, as well as the standard deviation 

of these values, determined from a large enough 

number of cases representing the class of HCC. 

� The probability distribution for the values of the 

textural features in the case of HCC (Witten et al., 

2005).  

The mathematical description of the imagistic textural 

model is given bellow.  

 

Let F be the space of textural features, containing a 

number of n such features.  
 

     niifF ,..,1}{ ==             (1) 
 

Then, the textural imagistic model of the tumor, TM, 

consists in a collection of vectors Vfi, associated with 

each relevant textural feature fi, containing the 

specific values that characterize each analyzed class. 
 

           nif i
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In our case, we start with an initial feature space 

consisting in a set of textural features, like the average 

of grey levels, minimum grey level, maximum grey 

level, the GLCM second order parameters, edge-

based statistics, the fractal Hurst coefficient and the 

entropy computed on three components of the image 

obtained by applying the wavelet transform at the first 

level of decomposition.  
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The relevant features will be selected from these 

textural features during model generation. The vectors 

of the imagistic textural model consist in the specific 

parameters, associated with the relevant textural 

features, previously mentioned and given bellow, 

where Min (the minimum value), Max (the maximum 

value), Mean (the mean value) and the Standard 

Deviation are real numbers; the Relevance is an 

integer, representing the level of the textural 

parameter in the decision tree. The Probability 

Distribution is a vector of intervals, each interval 

having associated a certain probability. 
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As we mentioned before, the model generation 

(implementation) phase consists in two steps: the 

image analysis step and the learning step.  

 

At the end, the validation of the obtained textural 

imagistic model of HCC is due.  

 
In a forerunner step, the image classes are built for 
HCC and non-HCC categories, the textural parameters 
are computed on each of these images, and stored then 

in a database. During the image analysis step, we use 
texture-based methods for feature extraction, like the 
Grey Levels Co-occurrence Matrix (GLCM) and its se-
cond order parameters, the Hurst fractal index, edge-
based statistics, and respectively the entropy parameter 
computed on the images resulted after applying the 
Wavelet transform. Then, Bayesian Belief Networks 
and Decision Trees are applied in order to determine 
the relevance of the textural features, the relevant 
features are separated from the non-relevant ones and 
the final set of features for the imagistic textural model 
is established. During the learning step, the statistical 
values like the minimum, maximum, mean value and 
the standard deviation are learned on a large enough 
number of samples; the probability distributions per 
class are also determined for each textural feature. 
Specific methods for automatic, supervised learning 
that involve the analysis of the features relevance and 
of the probabilistic influence between the features, like 
Bayesian Belief Networks and Decision Trees are used 
during the model generation phase. During validation, 
we take into account only the final feature space 
obtained in the previous phase, using its elements as 
inputs for classifiers like Bayesian Belief Networks, 
Decision Trees and Neural Networks, in order to 
evaluate the recognition rate in each case. The 
validation is being done on a new set of images (the 
test set), different from the training set. The subset of 
obtained relevant textural features is also compared 
with other textural features subsets obtained by using 
alternative methods for feature selection.   
 

 

4.2. Description of the methods used in the 

imagistic textural model generation and 

validation phases 
 

4.2.1.Texture-based methods for image analysis. 
 

The texture-based methods that we apply and analyze 

in this work are shortly described bellow. 
 

� The Grey Levels Co-occurrence Matrix  
The Grey Levels Co-occurrence Matrix (GLCM) 

provides, through the values of the second order 
parameters, useful information about the visual 
properties of the tissue like echogenicity, 
homogeneity and contrast. It computes, for each 
possible pair of grey levels (g1, g2), the number of 
pairs of pixels, having intensities g1 and g2, being in 
a spatial relationship given by a specified 

displacement vector
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where #S is the size of the set S. 

The scalar value of 
→

dx , denoted by dx, is the horizontal 

distance between the two pixels of the considered pair 
belonging to the 2D image, while the scalar value of 
→

dy , denoted by dy, is the vertical distance between the 

same two pixels (Clausi et al., 2002).  
 



In practice, the GLCM probability is used. In our 

implementation, we computed the GLCM probability 

matrix by considering dx = 2 and dy = 1, because due 

to the nature of the ultrasound image, the grey level 

intensity decreases with the deepness, so we wanted 

to surprise very accurately the grey level differences 

in the vertical direction. The second order parameters 

(Haralick features) that we compute from GLCM, 

considered as being able to best characterize the 

tumor tissue from the point of view of the grey levels 

distribution, are: contrast, variance, local 

homogeneity, correlation, energy and entropy (Clausi 

et al., 2002), (Valckx et al., 1996) . 
 

� Edge-based statistics  
The edge-based statistics like edge-frequency and 

edge-contrast also provide useful information con-

cerning the complexity of grey-levels structure, as 

they compute the relative number of separations 

between regions with different intensity values and 

also the relative amount of the difference between 

these regions (Wu et al., 1992). Edge contrast 

measures the differences in intensity level between 

neighbouring pixels, while edge frequency refers to 

the amount of edge pixels in the area of interest. 
  

� The Hurst Fractal Coefficient 

Fractals provide a measure of the complexity of the 

grey level structure in a certain region of interest, 

having the property of self-similarity at different 

scales. Every texture, characterized through the 

intensity I, can be represented as a reproduction of the 

copies of N basic elements, scaled with a certain 

factor.   

                          I=N
D                                                           

(6) 

where D is the fractal dimension of the texture.  

One of the ways to express the fractal dimension is 

the Hurst coefficient, computed through a specific 

algorithm, described in (Parker, 1996).   
 

� The Wavelet Transform 

The Wavelet Transform performs the decomposition 

of the signal spectrum in components having various 

frequencies, thus giving the possibility of analyzing 

the signal at various resolutions and of scale-

insensitive methods development.  The decomposition 

is made around the basic frequency of the spectrum. 

The expression of the decomposition through the 

Wavelet Transform is the following (Parker, 1996):   
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Here, ψ is the wavelet basic function, (mother 

wavelet); it usually takes the form of a sinusoid, 

giving the name of the transform. In practice the Haar 

function is used more often (Parker, 1996). We also 

consider here the Haar function as the basis for the 

Wavelet transform. For implementation, we use the 

discreet form of the Wavelet decomposition formula. 

We extract the signal component, and then we 

compute the entropy value for each component, using 

the expression (Stollnitz et al., 1995): 

 ∑∑
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4.2.2. Pattern classification methods used during 

learning and evaluation 
 

The values of the textural features described above 

are used as inputs for classifiers like Bayesian Belief 

Networks, Decision Trees and Neural Networks 

(Duda et al., 2000), in order to analyze both their rele-

vance and the recognition rates obtained.  
 

In order to analyze the relevance of the textural 

features, a hierarchy of two classifiers is used: 

• In the first stage, the Bayesian Belief Networks 

are used and a yes/no answer is obtained concerning 

the existence of any probabilistic influence between 

the values of textural features and the values of the 

class parameter. The features for which the answer 

was “yes” are included in the final set of relevant 

features. A Bayesian Belief Network with a single 

layer is implemented, the purpose being that of 

analyzing the inflence among the textural features and 

the class parameter. 

• In the second stage, the relevant textural features 

obtained in the first stage are considered as inputs for 

the Decision Trees method, and they are assigned a 

relevance value, equal with the level of the textural 

feature in the Decision Tree. If a textural feature is not 

part of the Decision Tree, it will be assigned a value 

of -1 for its relevance. Bayesian Belief Networks are 

also used in order to learn the probability distribution 

per class of each textural feature. (Witten et al., 2005). 

The recognition rates, obtained by using the group the 

relevant textural features, are analyzed, for the future 

purpose of automatic recognition.   
 

The software instrument Weka 3.5 is used for pattern 

recognition and parameters exploration (Witten et al., 

2005). The Bayesian Belief Networks, the  Decision 

Trees method  (J48 algorithm from Weka 3.5, 

corresponding to the well known C4.5 algorithm), as 

well as the Multilayer Perceptron method are used for 

this purpose, in order to evaluate the imagistic textural 

model. For Bayesian Belief Networks, K2 search 

method with BMAEstimator were selected (Boukaert, 

2004); for Multilayer Perceptron, the ‘a’ value, 

predefined in Weka 3.5, and having the significance   

a = (number of attributes + number of classes)/2, was 

chosen for the number of hidden nodes from the 

single hidden layer. Thus, a reasonable number of 

hidden nodes resulted, to get a satisfying accuracy and 

also to avoid overtraining. Concerning the learning 

rate, a value of 0.1 was chosen and a value of 0.9 was 

set for the momentum (Duda et al., 2000); the J48 
algorithm with pruning was used in the same 

environment and a minimum number of two examples 

was set for the terminal nodes.   



 
 

Figure 1. The Bayesian Belief Network showing the dependencies between the class parameter and the textural features 
 

5. EXPERIMENTS CONCERNING THE 

IMAGISTIC TEXTURAL MODEL OF HCC    

 

First, a set of 100 images for each class (HCC and 

non-HCC) was gathered and a training set was built. 

The non-HCC class consisted of images of cirrhotic 

liver, cirrhosis being the disease that precedes HCC. 

The images were taken under the same orientation 

conditions and under the same settings of the echo-

graphic device, at 5.5 MHz.  

 

During the image analysis step, the methods for texture 

analysis were applied on regions of interest of 

rectangular shape and size of 50x50, selected inside the 

tumor for HCC class, and anywhere inside the liver for 

the non-HCC class. The values of these textural features 

were computed and stored. The Bayesian Belief 

Networks and the Decision Trees were applied in two 

stages in order to determine the subset of relevant 

textural feature and their probability distribution. The 

Bayesian Belief Network, containing the relevant grey-

level based features and edge-based statistics determined 

in the first stage is illustrated in Figure 1. From the first 

stage, the following textural features resulted as being 

relevant and were included in the textural imagistic 

model of HCC: the maximum of grey levels, the GLCM 

features entropy, energy, correlation, variance; edge 

frequency, edge contrast and the entropies on the first 

three wavelet components of the image. They were 

considered as inputs for the Decision Tree method. The 

structure of the Decision Tree obtained by applying the 

J48 method of Weka 3.5, illustrates that the GLCM 

energy (situated on the 1
st
 level), edge contrast (on the 

2
nd

 level) the maximum grey level (situated on the 3
rd
 

level) and edge frequency (on the 4
th
 level) are the most 

relevant features. During the learning step, the relevant 

textural features were considered and their specific, 

statistical values were learned.  

 

From the probability distribution for the GLCM 

energy parameter, obtained with Weka 3.5, after 

applying Bayesian Belief Networks, illustrated in 

Table 1, it results that it takes, in the case of HCC, 

low values situated in the interval (0, 0.000736] with 

the probability of 0.893, and in the case of non-HCC  

 

 

 Table 1. The probability distribution for energy 
 

HCC         (0, 0.000736]               (0.000736, ∞) 

Yes              0.893                               0.107 

No               0.008                               0.992 

 

it takes high values situated in the interval (0.000736, 

∞) with a probability of 0.992. 

 

A part of the textural imagistic model for the class of 

HCC, containing two of the most relevant features 

and their specific values, is illustrated in Table 2.  

 

In the previous table, P is the probability value 

associated to the given interval; thus, the most 

probable interval of variation for the considered 

textural feature is provided; it is derived from the 

probability distribution per class learned using the 

Bayesian Belief Networks. 

 

During the validation phase, the test set was built 

containing 100 images per class (HCC and cirrhotic 

liver), taken under the same conditions as the images 

in the training set. The classification methods of 

Bayesian Belief Networks, Decision Trees and 

Multilayer Perceptron of Weka 3.5 were applied on 

the textural features determined as being relevant 

during the learning phase. The cross validation 

method with 100 folds was chosen.  Using Bayesian 

Belief Networks, the recognition rate was 91.74 %, 

the sensitivity was 88.3%, the specificity was 95.9% 

and the area under the ROC curve was 0.977.  With 

Multilayer Perceptron the accuracy was 97.247%, the 

sensitivity was 96.7%, the specificity was 98% and 

the area under the ROC curve was 0.983. With 

Decision Trees (J48 algorithm) the recognition rate 

was 89.90%, the sensitivity was 91.7%, the specificity 

was 87.8% and the area under the ROC curve was 

0.943. Alternatively, Exhaustive Search combined 

with CFS (Correlation-Based Feature Selection) 

subset evaluation (Hall et al., 2003), (Witten et al., 

2005) was applied in Weka 3.5. in order to compare 

the features selected through this method with our 

subset of relevant features. The following subset was 

selected by Weka: minimum grey level, variance, 

entropies computed on the first and third wavelet 

 

Table 2. The statistical values for the most relevant 

textural features 
 

HCC       Min    Max  Mean    Most Probable                    

Interval 

 

GLCM                                                 (0, 0.00073], 

Energy            0         0.002    0.001      P=0.893 
                                        

Max Grey                                              [77.5, ∞) 

Level           50        133       84.1         P= 0.598 

 



subimages from the first level of decomposition, edge 

contrast and edge frequency. Thus, the intersection 

done between the two feature subsets contain 6 

features, which is 60% of our subset and 85.7% of the 

second subset. 

 

5. CONCLUSIONS    

 

As the experimental results demonstrate, the textural 

features are adequate for HCC representation and 

recognition. GLCM based features, as well as edge-

based features and multi-resolution features are 

important for HCC characterization and recognition. 

In association with Decision Trees and Bayesian 

Belief Networks, they are suitable for building the 

imagistic model of HCC, as the results of applying the 

classification methods on the relevant textural 

parameters are satisfying, being around 90%. 

Concerning the correlation with the visual features, 

the importance of the maximum grey level is 

explained through the fact that the HCC tumors are 

hyperechogenic in most of the images. Features like 

GLCM entropy, GLCM variance, edge contrast and 

edge frequency confirm the complex structure in grey 

levels and in local features, as expected in the case of 

a malignant tumor. Since energy was found correlated 

with entropy through a logarithmic curve, the energy 

parameter was also found relevant. The relevance of 

the GLCM correlation denotes the existence of a 

mutual dependence between the grey levels from the 

malignant tumor tissue, being thus a subtle property.  

 

The experiments will be further improved by 

collecting larger sets of items per class, belonging to a 

bigger number of patients, in order to obtain more 

reliable results and to diminish the error rates. Other 

types of pathological structures, like other malignant 

tumors, benign tumors, healthy liver tissue and liver 

tissue affected by other diffuse liver diseases will be 

considered as well for the non-HCC class. Also, other 

feature selection specific methods (Jain et al., 2000) 

will be elaborated and tested, the results of these 

methods will be compared and the best feature 

selection method will be established in order to obtain 

the best imagistic textural model. The mutual 

dependencies and the kind of influences between the 

textural features will also be analyzed using methods 

like Bayesian Belief Networks with multiple layers or 

by regression, in order to exclude the redundant 

parameters, to improve the speed and the accuracy. 

 

The method will be extended for incipient HCC 

recognition and also for HCC prediction through the 

detection of the advanced cirrhosis phase that 

precedes HCC. 
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