

DEPLOYING THE ONLINE CERTIFICATE STATUS PROTOCOL WITHIN HIGH-VOLUME PKI

ENVIRONMENTS

Marius Marian

Department of Automation, University of Craiova

Abstract: More and more human activities and businesses are now quite common to take

place via Internet. The experience has proved that most network-related applications are

affected by security attacks given a relatively moderate amount of time. Public-key

cryptography permits to easily obtain integrity and confidentiality for the data

exchanged between network applications, and also authentication of the involved

parties. The verification of public-key certificates is one essential step when using

public-key technology. The Online Certificate Status Protocol (OCSP) is meant to

provide a timely and secure solution of getting certificate status information. The paper

presents an OCSP implementation respecting most of the standardized lightweight

OCSP profile, meant to accomodate the certificate revocation checking service for large

scale public-key infrastructures.

Keywords: public-key infrastructures (PKI), online certificate status protocol (OCSP),

certificate validation

1. INTRODUCTION

It's been a while since globalization – the name of the

latest human cultural phenomenon – has started to

affect each and every one of us, although quite often

in such a transparent way. One of its characteristics is

its capacity of getting more and more human

activities on-line. With the arrival of Internet, new

opportunities were created for interactive

communication between parties who may have no

pre-established relationship, and also for the

development of new business practices such as

electronic commerce (e-commerce), and for the

innovation of public services for citizens, private

companies, academics, and other public

administration services.

But in this networked world, it is evident that

communication without security is dangerous as long

as undesired third parties can easily read, forge, or

block messages. In order to achieve completely

these new opportunities of Internet-based

businesses, it is essential to guarantee the

authenticity, integrity, confidentiality and non-

repudiation of the information exchanged

[Schneier], [Menezes et al.].

To deploy security within closed user groups,

secret-key cryptography could be a solution, but

when it comes to large, open groups of users (as it

is the case of Internet) public-key cryptography

represents since the end of the '90s the most

suitable technique.

Public-key cryptography, also known as

asymmetric cryptography, uses two matched keys

in such a way that a message encrypted with one

key can only be decrypted with the other. One of

these keys will be kept private by the owner of the

key pair, while the other will be made publicly-

available. With each entity having a private key and a

matching public key, the risks and overhead of

symmetric cryptography involved in the process of

sharing a copy of a secret key between multiple

parties are eliminated. It is critical that the user be

assured that the public key used is the correct one of

its communicating party.

The protections afforded by public-key technology

are totally compromised if intruders can substitute

non-authentic or use compromised (i.e. non-verified)

public keys.

Public-key certificates offered a solution to this

problem [Kohnfelder]. Also known as digital

certificates, they are data structures that securely bind

a public-key value to an entity's identity. Currently,

the most known and used standard for public-key

certificates is X.509 [Housley et al.]. A public-key

certificate is digitally signed by an entity, called

certification authority (CA), that has confirmed the

identity and maybe some other attributes of the

holder of the corresponding private key. Certificates

are a means of achieving scalability, with the final

result of multiplying the size of the population using

public-key technology.

2. PUBLIC-KEY INFRASTRUCTURES AND

CERTIFICATE VALIDATION

The deployment of public-key cryptography in

worldwide networks requires the so-called public-key

infrastructures (PKI) that play the role of trusted

third party (TTP), enabling thus diffusion of trust and

confidence in networked environments. Essentially, a

PKI comprises the set of hardware, software, people,

policies, and procedures needed to create, manage,

store, distribute, and revoke digital certificates based

on asymmetric cryptography. PKI is becoming

nowadays the central delivery point of security within

companies, academic environments, and public

administration.

Certificate validation is a complex process by which

a certificate user establishes that the assertions made

by a digital certificate can be trusted. During this

process, a user will perform several verifications in

order to establish whether the certificate is properly

formed, signed and currently in force. If any of these

verification steps fail the whole certificate validation

process will fail.

Revocation checking represents a crucial part of

any certificate-based security scheme. In fact,

using a digital certificate without verifying its

status can lead to serious consequences for both the

relying party and the PKI. Consequently, the

certificate user must investigate the status of the

certificate, that is to verify whether it is still in its

operational period or it was revoked, or otherwise

announced as invalid.

Traditionally, revoked certificates were published

on black lists called CRLs. However, the usage of

certificate revocation lists (CRL) proves to have

limitations from the scalability point of view and

also in what concerns their use for on-line

commercial transactions. Without completely

replacing the CRL mechanism, the on-line

certificate status protocol (OCSP) [Myers et al.]

tries to provide a flexible scheme for real-time

certificate status verification.

In practice, OCSP is suited for those cases where

the freshness of revocation information represents

a high-priority requirement of the relying party.

For example, the need for real-time checking of

certificate status is an essential requirement in

Internet-based scenarios involving sensitive, high-

value transactions. Additionally, even though a

CRL is issued every hour, with an application

validating a certificate by means of CRLs, it will

still be nearly 60 minutes for a revoked certificate

to appear as valid. And this is only one of the

aspects that OCSP addresses very well.

3. OCSP IMPLEMENTATION

[Marian], [Marian et al.] detail the actual

implementation of a real-time revocation-

notification service based on OCSP. The

performance measurements of this client-server

implementation (tested on various platforms

including here Win32, Solaris and Linux) and the

comparative scrutiny with other revocation

schemes confirm the architecture’s capability to

fulfill the timeliness requirements needed for high-

value Internet transactions.

Additionally, it is described and proposed an

OCSP-client API, a very useful tool for PKI-aware

applications able to perform certificate status

checking in a transparent way on behalf of the user

application. Given the fact that revocation checking

is poorly implemented in many certificate-using

products, we underline the advantages of

integrating such an OCSP feature into PKI-based

applications, with reduced technological costs.

4. SCALABILITY ISSUES

Different requirements are imposed today on an

OCSP implementation [Deacon et al.]:

• to generate a fresh OCSP response for each

OCSP request even in environments with

bandwidth constraints and with limitations

for what concerns the processing resources

on both client and server side

• to remain cost-effective even when the

environments where the related PKI is

deployed, scale up

To exemplify, we will consider the mobile

environments. In these environments, the network

bandwidth costs and is limited. Mobile devices

depend strongly on battery lifetime and are

additionally constrained by their computing power.

Therefore, the OCSP responders must be carefully

implemented such that to reduce at maximum the

pressure on the network bandwidth and also on the

clients' capability to process OCSP responses.

On the other hand, sensitive transactions (for

example, financial applications) have already become

available in these mobile, extremely populated

environments and PKIs have shortly followed, being

deployed to support their security needs. It becomes

stringent that OCSP must be used in such a way to

minimize the load on the corresponding OCSP

responder (since millions of clients may issue

requests for certificate status checking) and also on

the network infrastructure used.

To address all these scalability issues, RFC 5019

[Deacon et al.] has recommended a message profile

and also an optimal behavior for OCSP clients and

responders permitting thus:

• OCSP response pre-production and

distribution

• Reduced OCSP message size to lower

bandwidth usage

• Response message caching both in the

network and on the client.

OCSP clients relying on this profile will not be able

to differentiate between lightweight-profiled and

fully-fledged OCSP responders, unless by means of

an out-of-band notification mechanism. Nevertheless,

the modifications required by this lightweight profile

will not compromise the interoperability between a

fully-fledged OCSP client and a lightweight-

profiled OCSP responder.

Our client-server OCSP implementation was

changed so that to allow configuration and

operation of both modes: OCSP fully-compatible

and OCSP lightweight-profile.

In brief, the modifications purported by this

lightweight profile apply to:

• OCSP message structure (we include here

both OCSP request and response)

• OCSP client behavior (how the OCSP

responder is discovered and also, the way

in which it sends a request)

• the mechanism to ensure fresh OCSP

responses

• the transport profile

• the caching of the OCSP responses

• the security of the general OCSP scenario

(presenting the measures to mitigate

replay, man-in-the-middle and denial-of-

service attacks)

5. LIGHTWEIGHT OCSP PROFILE MESSAGE

STRUCTURE

For this profile, our OCSP client was modified

such that to be able to include only one request in

the OCSPRequest.RequestList structure profile

[Myers et al.]. In the same way, the client will use

the SHA1 algorithm to compute the digest values

corresponding to the CertID.issuerNameHash and

the CertID.issuerKeyHash values. The client can

also be configured not to include the

singleRequestExtensions structure and also to

avoid inclusion of the requestExtensions structure.

However, if a requestExtensions structure is

necessary and gets included in the OCSPRequest,

it will only contain the nonce extension (id-pkix-

ocsp-nonce).

When working in this profile the OCSP client will

not send signed OCSPRequests. If the

OCSPRequest is signed, the client abiding to this

profile specifies its name in the

OCSPRequest.requestorName field. On the server

side, the standard states that the lightweight OCSP

responder can choose to ignore the signature on

OCSPRequests, however in practice our

implementation will always check the signature on

the OCSPRequest, if present.

Responders generate a BasicOCSPResponse as

identified by the id-pkix-ocsp-basic OID (object

identifier). Clients must be able to parse and accept a

BasicOCSPResponse. OCSPResponses conformant

to this profile include only one SingleResponse in the

ResponseData.responses structure. Additionally, the

responder should avoid including the

responseExtensions in order to minimize the charge

on the client. Some of the unrecognized non-critical

responseExtensions in the response will be however

ignored by clients.

Clients as usual will always validate the signature on

the returned OCSPResponse. When the response is

signed by a delegate of the issuing certification

authority (CA), a valid responder's certificate is

referenced in the BasicOCSPResponse.certs

structure. To avoid further load on the client's

computing power the id-pkix-ocsp-nocheck extension

is always included in the response, to announce

clients not to check the responder certificate's status.

One noteworthy feature is that neither an OCSP

authorityInfoAccess (AIA) extension nor the

cRLDistributionPoints (CRLDP) extension are

included in the OCSP responder's certificate.

Consequently, the responder's signing certificate will

be relatively short-lived (in order to avoid its

compromise) and renewed regularly. To facilitate the

identification of the appropriate OCSP responder

certificate among all these certificates, client will be

using both the byName and byKey

ResponseData.ResponderID choices. To further

reduce the size of the response in scenarios where

limitations of the bandwidth are present, the

responders should use the byKey.

Our implementation assumes that the OCSP database

and information sources are authoritative for the

PKI's certificates it services therefore the

OCSPResponseStatus will be successful. When

access to authoritative records for a particular

certificate is not available, the responder returns an

unauthorized OCSPResponseStatus. This is useful

when the responder provides pre-produced OCSP

responses. One trick to minimize the load on the

responder is to remove from the local database of

revocation information all records that concern

expired certificates. In this way, clients requesting

revocation status for expired certificates (and thus,

removed from the database) will be returned

responses with an unauthorized

OCSPResponseStatus.

For the purposes of this profile, ASN.1-encoded

GeneralizedTime values such as thisUpdate,

nextUpdate, and producedAt must be expressed in

Greenwich Mean Time and must include seconds,

even when the number of seconds is zero [Deacon

et al.].

Our OCSP client implementation already supports

the authorityInfoAccess extension as defined in

[Housley et al.] and successfully recognizes the id-

ad-ocsp access method. This extension is used by

CAs to inform clients how they can contact the

OCSP service. To respect the profile

recommendation, in the case where a client is

checking the status of a certificate that contains

both an authorityInformationAccess extension and

a cRLDistributionPoints extension pointing to a

CRL, our client will first attempt to contact the

OCSP responder. Clients will try to retrieve the

CRL if and only if no OCSP response is received

from the responder after a locally configured

timeout and number of retries.

The profile [Deacon et al.] states that in order to

save resources concerning the network traffic,

OCSP applications must first verify the signature

of signed data before asking an OCSP client to

check the status of certificates used to verify the

data. If the signature is invalid or the application is

not able to verify it, an OCSP check becomes futile

and consequently never requested.

6. TIMELINESS OF OCSP RESPONSES

OCSP clients within this profile must take

appropriate measures to ensure that they receive

the freshest OCSP response available. At least two

mechanisms are available for this.

• either by means of nonces (i.e. no more

than once), or

• by checking the time of the OCSP

response. For this to happen, both clients

and responders must have access to an

accurate source of time.

The profile specifies that clients should not include

a requestExtensions structure in OCSP requests, so

clients must be able to determine OCSPResponse

freshness based on an accurate source of time.

Clients that opt to include a nonce in the request

should not reject a corresponding OCSP response

solely on the basis of the nonexistent expected

nonce, but must fall back to validating the

OCSPResponse based on time. On the other hand,

if the client does not include a nonce in the request

it must ignore any nonce that may be present in the

response.

The verification of freshness imposes that clients

check first for the existence of the nextUpdate field,

then obtain an accurate reading of current time, and

then compare the current time reading with the values

of the thisUpdate and nextUpdate fields contained in

the response. The absence of the nextUpdate field is

an indication for the client that the response should

not be trusted. The relation to check is:

thisUpdate < current time < nextUpdate

Our client implementation does not allow

configuration of a small tolerance period for

acceptance of responses after nextUpdate to handle

minor clock differences relative to responders and

caches.

7. TRANSPORT PROTOCOLS

Both implementations of the OCSP responder and the

client support requests and responses over HTTP.

When sending requests that are less than or equal to

255 bytes in total (after encoding), clients use the

GET method (to enable OCSP response caching).

OCSP requests larger than 255 bytes are submitted

using the POST method.

7.1 Caching

The ability to cache OCSP responses throughout the

network is an important factor in high volume OCSP

deployments. Including OCSP responses in protocol

exchanges, such as has been defined in TLS [Dierks

et al.], is also important for the profile. To minimize

bandwidth usage, clients locally cache authoritative

OCSP responses (i.e., a response with a signature that

has been successfully validated and that indicate an

OCSPResponseStatus of successful [Deacon et al.].

Most OCSP clients will send OCSPRequests only

when a cached response expires.

In some scenarios, it is advantageous to include

OCSP response information within the protocol being

utilized between the client and server. The profile

[Deacon et al.] enumerates the interesting effects

when such a behavior is adopted:

it allows for the caching of OCSP responses on the

server, thus lowering the number of hits to the OCSP

responder:

• it enables certificate validation in the event

the client is not connected to a network and

thus eliminating the need for clients to

establish a new HTTP session with the

responder.

• it reduces the number of round trips the

client needs to make in order to complete

a handshake.

• it simplifies the client-side OCSP

implementation by enabling a situation

where the client need only the ability to

parse and recognize OCSP responses.

Currently, this functionality has been specified as

an extension to the TLS protocol [Dierks et al.].

The lightweight OCSP profile recommends that

both TLS clients and servers implement the

certificate status request extension mechanism for

TLS.

Our OCSP client implementation is currently

missing the possibility of caching and using OCSP

responses on-site.

8. PROFILE VULNERABILITIES

The profile is prone to several types of attacks:

• replay attacks.

• man-in-the-middle attacks

• masquerading attacks

• denial-of-service attacks

The replay of OCSP responses can be done when

the use of nonces is dismissed. OCSP clients can

thus be fed fake good responses when the actual

status of a certificate is revoked. The OCSP clients

should strongly rely on accurate sources of time in

order to avoid the receipt of an aged response.

A well implemented OCSP client will never fall for

a man-in-the-middle attack simply by properly

checking the identity of the entity with which they

are communicating in order to ensure that it

actually is the OCSP responder they suppose it is.

The use of signed responses in OCSP serves

rightfully to authenticate the identity of the OCSP

responder and to verify that it is authorized to sign

responses on the CA's behalf.

The above statement also applies for impersonation

attacks. The use of signed responses in OCSP

serves to authenticate the identity of OCSP

responder. OCSP clients must properly validate the

signature of the OCSP response and the signature

on the OCSP response signer certificate to ensure

that an authorized responder created it.

The most difficult attack to combat is denial-of-

service. As this profile specifies the use of

unsigned OCSP requests, access to the responder

may be implicitly given to everyone who can send a

request to a responder, and thus the ability to mount a

denial-of-service attack via a flood of requests may

be greater. To mitigate this other measures can be

conceived, the profile suggests that a responder could

limit the rate of incoming requests from a particular

IP address if questionable behavior is detected. But

this assumes that an additional security infrastructure

to be built around the PKI services.

9. CONCLUSIONS

The original client-server implementation of the

OCSP standard presented in this paper was deployed

since 2001 as a service within the EuroPKI

[EuroPKI] public-key infrastructure.

The lightweight OCSP profile [Deacon et al.]

standard appeared September 2007. Therefore,

modifications were brought to the original

implementation such that to adopt this standard

profile and to allow a more scalable approach for

high-volume environments using security based on

public-key technology. Further improvements of this

implementation will concern the caching mechanisms

on the client side, and also a better management of

the OCSP pre-produced responses.

REFERENCES

Deacon, A., Hurst, R., (2007) The Lightweight

Online Certificate Status Protocol (OCSP)

Profile for High-Volume Environments, RFC

5019

Dierks, T., and Rescorla, E. (2006) The Transport

Layer Security Protocol Version 1.1, RFC 4346

EuroPKI public-key infrastructure, available online at

http://www.europki.org

Fielding, R., Gettys, J., Mogul, J. Frystyk, H.,

Masinter, L., Leach, P. and T. Berners-Lee,

(1999) Hypertext Transfer Protocol -- HTTP/1.1,

RFC 2616

Housley, R., Polk, W., Ford, W., Solo, D. (2002)

Internet X.509 Public Key Infrastructure

Certificate and Certificate Revocation List (CRL)

Profile, IETF, RFC 3280

Kohnfelder, L.M., (1978) Toward a Practical Public-

Key Cryptosystem, B.Sc. thesis, MIT Department

of Electrical Engineering

Marian, M., (2001) An Implementation of the Online

Certificate Status Protocol, Annals of the

University of Craiova, pp157-166, ISSN 1223-

530x

Marian, M., Berbecaru, D., Lioy, A. (2002)

Security aspects in standard certificate

revocation mechanisms: a case study for

OCSP, Proceedings of 7th IEEE Symposium

on Computers and Communications,

Taormina/Giardini Naxos, Italy, July 1 - 4,

2002, pp: 484 – 489

Menezes, A.J., Oorschot, P.C., Vanstone, S. (1997)

Handbook of Applied Cryptography, CRC

Press, SBN: 0-8493-8523-7

Myers, M., Ankney, R., Malpani, A., Galperin, S.

and Adams, C., (1999) X.509 Internet Public

Key Infrastructure: Online Certificate Status

Protocol - OCSP, RFC 2560

Schneier, B., (1996) Applied Cryptography:

Protocols, Algorithms, and Source Code in C,

John Wiley & Sons, Inc.

