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Abstract: More and more human activities and businesses are now quite common to take 

place via Internet. The experience has proved that most network-related applications are 

affected by security attacks given a relatively moderate amount of time. Public-key 

cryptography permits to easily obtain integrity and confidentiality for the data 

exchanged between network applications, and also authentication of the involved 

parties. The verification of public-key certificates is one essential step when using 

public-key technology. The Online Certificate Status Protocol (OCSP) is meant to 

provide a timely and secure solution of getting certificate status information. The paper 

presents an OCSP implementation respecting most of the standardized lightweight 

OCSP profile, meant to accomodate the certificate revocation checking service for large 

scale public-key infrastructures. 
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1. INTRODUCTION 
 

It's been a while since globalization – the name of the 

latest human cultural phenomenon – has started to 

affect each and every one of us, although quite often 

in such a transparent way. One of its characteristics is 

its capacity of getting more and more human 

activities on-line. With the arrival of Internet, new 

opportunities were created for interactive 

communication between parties who may have no 

pre-established relationship, and also for the 

development of new business practices such as 

electronic commerce (e-commerce), and for the 

innovation of public services for citizens, private 

companies, academics, and other public 

administration services. 

 

But in this networked world, it is evident that 

communication without security is dangerous as long 

as undesired third parties can easily read, forge, or 

block messages. In order to achieve completely 

these new opportunities of Internet-based 

businesses, it is essential to guarantee the 

authenticity, integrity, confidentiality and non-

repudiation of the information exchanged 

[Schneier], [Menezes et al.]. 

 

To deploy security within closed user groups, 

secret-key cryptography could be a solution, but 

when it comes to large, open groups of users (as it 

is the case of Internet) public-key cryptography 

represents since the end of the '90s the most 

suitable technique. 

 

Public-key cryptography, also known as 

asymmetric cryptography, uses two matched keys 

in such a way that a message encrypted with one 

key can only be decrypted with the other. One of 



these keys will be kept private by the owner of the 

key pair, while the other will be made publicly-

available. With each entity having a private key and a 

matching public key, the risks and overhead of 

symmetric cryptography involved in the process of 

sharing a copy of a secret key between multiple 

parties are eliminated. It is critical that the user be 

assured that the public key used is the correct one of 

its communicating party.  

 

The protections afforded by public-key technology 

are totally compromised if intruders can substitute 

non-authentic or use compromised (i.e. non-verified) 

public keys. 

 

Public-key certificates offered a solution to this 

problem [Kohnfelder]. Also known as digital 

certificates, they are data structures that securely bind 

a public-key value to an entity's identity. Currently, 

the most known and used standard for public-key 

certificates is X.509 [Housley et al.]. A public-key 

certificate is digitally signed by an entity, called 

certification authority (CA), that has confirmed the 

identity and maybe some other attributes of the 

holder of the corresponding private key. Certificates 

are a means of achieving scalability, with the final 

result of multiplying the size of the population using 

public-key technology. 

 

 

2. PUBLIC-KEY INFRASTRUCTURES AND 

CERTIFICATE VALIDATION 

 

The deployment of public-key cryptography in 

worldwide networks requires the so-called public-key 

infrastructures (PKI) that play the role of trusted 

third party (TTP), enabling thus diffusion of trust and 

confidence in networked environments. Essentially, a 

PKI comprises the set of hardware, software, people, 

policies, and procedures needed to create, manage, 

store, distribute, and revoke digital certificates based 

on asymmetric cryptography. PKI is becoming 

nowadays the central delivery point of security within 

companies, academic environments, and public 

administration. 

 

Certificate validation is a complex process by which 

a certificate user establishes that the assertions made 

by a digital certificate can be trusted. During this 

process, a user will perform several verifications in 

order to establish whether the certificate is properly 

formed, signed and currently in force. If any of these 

verification steps fail the whole certificate validation 

process will fail. 

 

Revocation checking represents a crucial part of 

any certificate-based security scheme. In fact, 

using a digital certificate without verifying its 

status can lead to serious consequences for both the 

relying party and the PKI. Consequently, the 

certificate user must investigate the status of the 

certificate, that is to verify whether it is still in its 

operational period or it was revoked, or otherwise 

announced as invalid. 

 

Traditionally, revoked certificates were published 

on black lists called CRLs. However, the usage of 

certificate revocation lists (CRL) proves to have 

limitations from the scalability point of view and 

also in what concerns their use for on-line 

commercial transactions. Without completely 

replacing the CRL mechanism, the on-line 

certificate status protocol (OCSP) [Myers et al.] 

tries to provide a flexible scheme for real-time 

certificate status verification. 

 

In practice, OCSP is suited for those cases where 

the freshness of revocation information represents 

a high-priority requirement of the relying party. 

For example, the need for real-time checking of 

certificate status is an essential requirement in 

Internet-based scenarios involving sensitive, high-

value transactions. Additionally, even though a 

CRL is issued every hour, with an application 

validating a certificate by means of CRLs, it will 

still be nearly 60 minutes for a revoked certificate 

to appear as valid. And this is only one of the 

aspects that OCSP addresses very well. 

 

 

3. OCSP IMPLEMENTATION 

 

[Marian], [Marian et al.] detail the actual 

implementation of a real-time revocation-

notification service based on OCSP. The 

performance measurements of this client-server 

implementation (tested on various platforms 

including here Win32, Solaris and Linux) and the 

comparative scrutiny with other revocation 

schemes confirm the architecture’s capability to 

fulfill the timeliness requirements needed for high-

value Internet transactions. 

 

Additionally, it is described and proposed an 

OCSP-client API, a very useful tool for PKI-aware 

applications able to perform certificate status 

checking in a transparent way on behalf of the user 

application. Given the fact that revocation checking 

is poorly implemented in many certificate-using 

products, we underline the advantages of 



integrating such an OCSP feature into PKI-based 

applications, with reduced technological costs. 

 

 

4. SCALABILITY ISSUES 

 

Different requirements are imposed today on an 

OCSP implementation [Deacon et al.]: 

• to generate a fresh OCSP response for each 

OCSP request even in environments with 

bandwidth constraints and with limitations 

for what concerns the processing resources 

on both client and server side 

• to remain cost-effective even when the 

environments where the related PKI is 

deployed, scale up 

 

To exemplify, we will consider the mobile 

environments. In these environments, the network 

bandwidth costs and is limited. Mobile devices 

depend strongly on battery lifetime and are 

additionally constrained by their computing power. 

Therefore, the OCSP responders must be carefully 

implemented such that to reduce at maximum the 

pressure on the network bandwidth and also on the 

clients' capability to process OCSP responses.  

 

On the other hand, sensitive transactions (for 

example, financial applications) have already become 

available in these mobile, extremely populated 

environments and PKIs have shortly followed, being 

deployed to support their security needs. It becomes 

stringent that OCSP must be used in such a way to 

minimize the load on the corresponding OCSP 

responder (since millions of clients may issue 

requests for certificate status checking) and also on 

the network infrastructure used. 

 

To address all these scalability issues, RFC 5019 

[Deacon et al.] has recommended a message profile 

and also an optimal behavior for OCSP clients and 

responders permitting thus: 

• OCSP response pre-production and 

distribution 

• Reduced OCSP message size to lower 

bandwidth usage 

• Response message caching both in the 

network and on the client. 

 

OCSP clients relying on this profile will not be able 

to differentiate between lightweight-profiled and 

fully-fledged OCSP responders, unless by means of 

an out-of-band notification mechanism. Nevertheless, 

the modifications required by this lightweight profile 

will not compromise the interoperability between a 

fully-fledged OCSP client and a lightweight-

profiled OCSP responder. 

 

Our client-server OCSP implementation was 

changed so that to allow configuration and 

operation of both modes: OCSP fully-compatible 

and OCSP lightweight-profile. 

 

In brief, the modifications purported by this 

lightweight profile apply to: 

• OCSP message structure (we include here 

both OCSP request and response) 

• OCSP client behavior (how the OCSP 

responder is discovered and also, the way 

in which it sends a request) 

• the mechanism to ensure fresh OCSP 

responses 

• the transport profile 

• the caching of the OCSP responses 

• the security of the general OCSP scenario 

(presenting the measures to mitigate 

replay, man-in-the-middle and denial-of-

service attacks) 

 

 

5. LIGHTWEIGHT OCSP PROFILE MESSAGE 

STRUCTURE 

 

For this profile, our OCSP client was modified 

such that to be able to include only one request in 

the OCSPRequest.RequestList structure profile 

[Myers et al.]. In the same way, the client will use 

the SHA1 algorithm to compute the digest values 

corresponding to the CertID.issuerNameHash and 

the CertID.issuerKeyHash values. The client can 

also be configured not to include the 

singleRequestExtensions structure and also to 

avoid inclusion of the requestExtensions structure.  

However, if a requestExtensions structure is 

necessary and gets included in the OCSPRequest, 

it will only contain the nonce extension (id-pkix-

ocsp-nonce). 

 

When working in this profile the OCSP client will 

not send signed OCSPRequests. If the 

OCSPRequest is signed, the client abiding to this 

profile specifies its name in the 

OCSPRequest.requestorName field. On the server 

side, the standard states that the lightweight OCSP 

responder can choose to ignore the signature on 

OCSPRequests, however in practice our 

implementation will always check the signature on 

the OCSPRequest, if present. 

 



Responders generate a BasicOCSPResponse as 

identified by the id-pkix-ocsp-basic OID (object 

identifier). Clients must be able to parse and accept a 

BasicOCSPResponse. OCSPResponses conformant 

to this profile include only one SingleResponse in the 

ResponseData.responses structure. Additionally, the 

responder should avoid including the 

responseExtensions in order to minimize the charge 

on the client.  Some of the unrecognized non-critical 

responseExtensions in the response will be however 

ignored by clients. 

 

Clients as usual will always validate the signature on 

the returned OCSPResponse. When the response is 

signed by a delegate of the issuing certification 

authority (CA), a valid responder's certificate is 

referenced in the BasicOCSPResponse.certs 

structure. To avoid further load on the client's 

computing power the id-pkix-ocsp-nocheck extension 

is always included in the response, to announce 

clients not to check the responder certificate's status.   

 

One noteworthy feature is that neither an OCSP 

authorityInfoAccess (AIA) extension nor the 

cRLDistributionPoints (CRLDP) extension are 

included in the OCSP responder's certificate.  

Consequently, the responder's signing certificate will 

be relatively short-lived (in order to avoid its 

compromise) and renewed regularly. To facilitate the 

identification of the appropriate OCSP responder 

certificate among all these certificates, client will be 

using both the byName and byKey 

ResponseData.ResponderID choices. To further 

reduce the size of the response in scenarios where 

limitations of the bandwidth are present, the 

responders should use the byKey. 

 

Our implementation assumes that the OCSP database 

and information sources are authoritative for the 

PKI's certificates it services therefore the 

OCSPResponseStatus will be successful. When 

access to authoritative records for a particular 

certificate is not available, the responder returns an 

unauthorized OCSPResponseStatus. This is useful 

when the responder provides pre-produced OCSP 

responses. One trick to minimize the load on the 

responder is to remove from the local database of 

revocation information all records that concern 

expired certificates. In this way, clients requesting 

revocation status for expired certificates (and thus, 

removed from the database) will be returned 

responses with an unauthorized 

OCSPResponseStatus. 

 

For the purposes of this profile, ASN.1-encoded 

GeneralizedTime values such as thisUpdate, 

nextUpdate, and producedAt must be expressed  in 

Greenwich Mean Time and must include seconds, 

even when the number of seconds is zero [Deacon 

et al.]. 

 

Our OCSP client implementation already supports 

the authorityInfoAccess extension as defined in 

[Housley et al.] and successfully recognizes the id-

ad-ocsp access method.  This extension is used by 

CAs to inform clients how they can contact the 

OCSP service. To respect the profile 

recommendation, in the case where a client is 

checking the status of a certificate that contains 

both an authorityInformationAccess extension and 

a cRLDistributionPoints extension pointing to a 

CRL, our client will first attempt to contact the 

OCSP responder. Clients will try to retrieve the 

CRL if and only if no OCSP response is received 

from the responder after a locally configured 

timeout and number of retries. 

    

The profile [Deacon et al.] states that in order to 

save resources concerning the network traffic, 

OCSP applications must first verify the signature 

of signed data before asking an OCSP client to 

check the status of certificates used to verify the 

data.  If the signature is invalid or the application is 

not able to verify it, an OCSP check becomes futile 

and consequently never requested.  

 

 

6. TIMELINESS OF OCSP RESPONSES 

 

OCSP clients within this profile must take 

appropriate measures to ensure that they receive 

the freshest OCSP response available. At least two 

mechanisms are available for this.   

• either by means of nonces (i.e. no more 

than once), or 

• by checking the time of the OCSP 

response. For this to happen, both clients 

and responders must have access to an 

accurate source of time. 

 

The profile specifies that clients should not include 

a requestExtensions structure in OCSP requests, so 

clients must be able to determine OCSPResponse 

freshness based on an accurate source of time.  

Clients that opt to include a nonce in the request 

should not reject a corresponding OCSP response 

solely on the basis of the nonexistent expected 

nonce, but must fall back to validating the 

OCSPResponse based on time. On the other hand, 

if the client does not include a nonce in the request 

it must ignore any nonce that may be present in the 

response. 



 

The verification of freshness imposes that clients 

check first for the existence of the nextUpdate field, 

then obtain an accurate reading of current time, and 

then compare the current time reading with the values 

of the thisUpdate and nextUpdate fields contained in 

the response. The absence of the nextUpdate field is 

an indication for the client that the response should 

not be trusted. The relation to check is:  

thisUpdate < current time < nextUpdate 

 

Our client implementation does not allow 

configuration of a small tolerance period for 

acceptance of responses after nextUpdate to handle 

minor clock differences relative to responders and 

caches.   

 

 

7. TRANSPORT PROTOCOLS  

 

Both implementations of the OCSP responder and the 

client support requests and responses over HTTP. 

When sending requests that are less than or equal to 

255 bytes in total (after encoding), clients use the 

GET method (to enable OCSP response caching).  

OCSP requests larger than 255 bytes are submitted 

using the POST method.   

 

7.1 Caching 

 

The ability to cache OCSP responses throughout the 

network is an important factor in high volume OCSP 

deployments. Including OCSP responses in protocol 

exchanges, such as has been defined in TLS [Dierks 

et al.], is also important for the profile. To minimize 

bandwidth usage, clients locally cache authoritative 

OCSP responses (i.e., a response with a signature that 

has been successfully validated and that indicate an 

OCSPResponseStatus of successful [Deacon et al.]. 

Most OCSP clients will send OCSPRequests only 

when a cached response expires.  

   

In some scenarios, it is advantageous to include 

OCSP response information within the protocol being 

utilized between the client and server.  The profile 

[Deacon et al.] enumerates the interesting effects 

when such a behavior is adopted: 

it allows for the caching of OCSP responses on the 

server, thus lowering the number of hits to the OCSP 

responder: 

• it enables certificate validation in the event 

the client is not connected to a network and 

thus eliminating the need for clients to 

establish a new HTTP session with the 

responder. 

• it reduces the number of round trips the 

client needs to make in order to complete 

a handshake. 

• it simplifies the client-side OCSP 

implementation by enabling a situation 

where the client need only the ability to 

parse and recognize OCSP responses. 

 

Currently, this functionality has been specified as 

an extension to the TLS protocol [Dierks et al.]. 

The lightweight OCSP profile recommends that 

both TLS clients and servers implement the 

certificate status request extension mechanism for 

TLS.  

 

Our OCSP client implementation is currently 

missing the possibility of caching and using OCSP 

responses on-site. 

 

 

8. PROFILE VULNERABILITIES  

 

The profile is prone to several types of attacks: 

• replay attacks. 

• man-in-the-middle attacks 

• masquerading attacks 

• denial-of-service attacks 

 

The replay of OCSP responses can be done when 

the use of nonces is dismissed. OCSP clients can 

thus be fed fake good responses when the actual 

status of a certificate is revoked. The OCSP clients 

should strongly rely on accurate sources of time in 

order to avoid the receipt of an aged response. 

    

A well implemented OCSP client will never fall for 

a man-in-the-middle attack simply by properly 

checking the identity of the entity with which they 

are communicating in order to ensure that it 

actually is the OCSP responder they suppose it is. 

The use of signed responses in OCSP serves 

rightfully to authenticate the identity of the OCSP 

responder and to verify that it is authorized to sign 

responses on the CA's behalf. 

 

The above statement also applies for impersonation 

attacks. The use of signed responses in OCSP 

serves to authenticate the identity of OCSP 

responder. OCSP clients must properly validate the 

signature of the OCSP response and the signature 

on the OCSP response signer certificate to ensure 

that an authorized responder created it. 

 

The most difficult attack to combat is denial-of-

service. As this profile specifies the use of 



unsigned OCSP requests, access to the responder 

may be implicitly given to everyone who can send a 

request to a responder, and thus the ability to mount a 

denial-of-service attack via a flood of requests may 

be greater.  To mitigate this other measures can be 

conceived, the profile suggests that a responder could 

limit the rate of incoming requests from a particular 

IP address if questionable behavior is detected. But 

this assumes that an additional security infrastructure 

to be built around the PKI services.  

 

 

9. CONCLUSIONS 

 

The original client-server implementation of the 

OCSP standard presented in this paper was deployed 

since 2001 as a service within the EuroPKI 

[EuroPKI] public-key infrastructure.  

The lightweight OCSP profile [Deacon et al.] 

standard appeared September 2007.  Therefore, 

modifications were brought to the original 

implementation such that to adopt this standard 

profile and to allow a more scalable approach for 

high-volume environments using security based on 

public-key technology. Further improvements of this 

implementation will concern the caching mechanisms 

on the client side, and also a better management of 

the OCSP pre-produced responses. 
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