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Abstract: This article in intended as a short reference for some of the techniques that can 

be used in object tracking. Object tracking has many application in various fields starting 

from Mechatronics, military applications, etc. A real interes for us is tracking the object 

in real time because of it’s intensive use in visual servoing. This article will present some 

methods and algorithms for such an operation starting with HMM (Hidden Markov 

Model), and continues presenting Viterbi algorithm, computing transitions probalities and 

finishes with improving transitions probabilities techniques such encoding regions 

smoothness constraint using JPM and efficient matching by dinamic programming. 
 

 

 
 

1. INTRODUCTION 
 

Reliable object tracking in complex visual 

environment is of great importance. In addition to its 

applications in human computer interaction (M. Isard 

and A. Blake, 1996, 1998) . As pointed in (Yong Rui, 

Thomas S. Huang, and Sharad Mehrotra , 1999), a 

unstructured video clip can be organized into key 

frames, shots and scenes. If we can reliably track an 

object, it can help detect then if the object is of 

interest (e.g., bigger size), and can therefore extract 

more meaningful key frames. Also, object tracking 

can provide useful information for shot boundary 

detection. 

 

To start object tracking, usually the trackers need to 

be initialized by an external module. For example, a 

human operator can select an object of interest and 

let the tracking begin. For a more intelligent tracking 

system, an automatic object detection module can be 

used to initialize the tracking. Automatic object 

detection algorithms are usually trained based on a 

set of images of typical object appearances at 

different states and viewed from different angles, e.g. 

the multi-view face detector or hand posture 

recognition. 

 

Once initiated, the tracking algorithms will conduct 

tracking based on the high correlations of the object 

motion, shape or appearance between consecutive 

video frames. Unfortunately, robust and efficient 

object tracking is still an open research problem. Two 

of the major challenges are: 

 

1. Visual measurements for tracking objects are not 

always reliable. To discriminate objects from 

background clutter, various image cues have been 

proposed. Object contour, face template or color 

distributions are used in (A.J. Colmenzrez et all, 1997 

D. Comaniciu et all, 2000, M. Isard et all, 1998, Y. Wu 

et all, 2000) respectively. In complex environments, 

none of the above features are robust enough 

individually. More and more researchers are therefore 

resorting to multiple visual cues. The major difficulty 

for multi cue object tracking is, however, how to 

effectively integrate the cues in a principled way. 

 

2. Tracking objects in nonlinear dynamic systems is 

not easy. While we know that Kalman filter provides 

an elegant solution for linear systems, in the real 

world, the states of the objects are usually 

nonlinearly related to the measurements through 

observation models. For example, the contour points 

of an ellipsoid object are nonlinearly related to the 

object’s position and orientation. 

 

The Hidden Markov Model (HMM) ( L.R. Rabiner et 

all., 1986) provides a potential tool to solve the first 

difficulty. It can integrate multiple visual cues by 

expanding the observation vectors and encode the 

spatial constraints in the state transition probabilities. 

Optimal contour can be obtained by the efficient 



Viterbi algorithm. However, extending the HMM 

structure from 1D time series to 2D imagery data is 

challenging. A pseudo-2D-HMM (embedded HMM) 

has been proposed for character recognition, face 

recognition, and template matching. A two-level 

HMM is defined, where super states are used to 

model the horizontal dimension and embedded states 

are used to model the vertical dimension. However, 

this approach requires a large number of parameters 

to be trained. Instead, we propose a new type of 

HMM that can probabilistically integrate multiple 

cues under various spatial constraints, including 

global shape prior, contour smoothness constraint, 

and region smoothness constraint. Parametric shape 

is used to model object contour. Multiple visual cues 

(e.g., edge and color) are collected along the normal 

lines of the predicted contour (see Fig. 1(a)). We 

define the HMM states to be the contour point 

location on each normal line. This representation 

allows us to formulate the 2D (in image plane) 

contour tracking into an easier-to-solve 1D problem. 

 

 
 

Fig. 1. The new contour model: (a) The contour in 

2D image space: The solid curve is the predicted 

contour. The dashed curve is the true contour. We 

want to find the s(φ) which is the index of the 

true contour point on the φth normal line φ∈   

[1,M]; (b) the Markovian assumption in our 

contour model. Note the HMM states are in the 

spatial domain 

 
 

2. CONTUR TRACKING USING HMM 
 

For tracking non-rigid objects, active contour models 

have been proved to be powerful tools (M. Kasset all 

19880, D. Terzopoulos et all, 1992). In traditional 

active contour methods, the optimization procedure is 

not very efficient due to the recursive contour 

refinement procedure [A.A. et all., 1990, J. Denzler 

et all., 1999). Considering the aperture effect, where 

only the deformations along the normal lines of the 

contour can be detected, we can restrict the contour 

searching to a set of normal lines only (see Fig. 1(a)). 

In this way, we convert the 2D searching problem 

into a simpler 1D problem. To define the 1D contour 

model, let φ = 1, ...,M, be the index of the normal 

lines and λ = −N, ...,N, be the index of pixels along a 

normal line and )(λρφ  denote the image intensity 

or color at pixel λ on line φ: 
 

                        )(λρφ = I(
ϕλx ,

ϕλy )                     (1) 

where (
ϕλx ,

ϕλy ) is the corresponding image 

coordinate of the pixel λ on the φ-th normal line. 

I(
ϕλx ,

ϕλy ) is the image intensity or color at 

(
ϕλx ,

ϕλy ). 

 

Each normal line has 2N + 1 pixels, which are 

indexed from −N to N. The center of each normal 

line is placed on the predicted contour position and  

indexed as 0. If the object had moved exactly as 

predicted, the detected contour points on all normal 

lines would have been at the center, i.e., 

],1[,0)( Ms ∈∀= ϕϕ . In reality, however, the 

object can change its motion and we need to find the 

true contour point s(φ) based on the pixel intensities 

and various spatial constraints. Note that instead of 

representing the contour by a 2D image coordinate, 

we can now represent the contour by a 1D function 

s(φ), φ = 1, ...,M. 

 

To detect the contour points accurately, different 

cues (e.g., edge and color) and prior constraints (e.g., 

contour smoothness constraint) can be integrated 

by an HMM. The hidden states of the HMM are the 

true contour points on all the normal lines, denoted as 

},...,...,{ 1 Mssss ϕ= . The observations of the 

HMM, },...,...,{ 1 MOOOO ϕ= , are collected along 

all the normal lines.  An HMM is specified by the 

observation model )|( ϕϕ sOP  and the transition 

probability )|( 1−ϕϕ ssp . Given current state sφ, the 

current observation Oφ , is independent of the 

previous state sφ−1 and the previous observation Oφ−1. 

Because of the Markovian property, we have p(sφ|s1, 

s2, ..., sφ−1) = p(sφ|sφ−1), which is illustrated in 

Fig.1(b). 

 

 

2.1 Observation Likelihood of Multiple Cues 

 

In the HMM, the observation on line φ (represented 

as Oφ) can include multiple cues. We describe the 

observation model based on color (i.e., ρφ(λ), λ ∈  

[−N,N]) and edge detection (i.e., zφ) along the line in 

this section. 

 

First, the observation likelihood based on the edge 

detection (zφ) can be derived similar to (M. Isard et 

all.,1998). Because of noise and image clutter, there 

can be multiple edges along each normal line. Let J 

be the number of detected edges, we have  
 

zφ = (z1, z2, ..., zJ ). 
 

Of the J edges, at most one is the true contour. We 

can therefore define J + 1 hypotheses: 

 

     H0 = {ej = F : j = 1, ..., J} 

     Hj = {ej = T, ek = F : k = 1, ..., J, k ≠ j}              (2) 

 



where ej = T means that the j
th

 edge is the true 

contour, and ej = F otherwise. Hypothesis H0 

therefore means the true contour is not detected by 

the edge detection. With the assumption that the 

clutter is a Poisson process along the line with spatial 

density γ and the true target measurement is normally 

distributed with standard deviation σz, we can obtain 

the edge likelihood model as follows: 

 

                       p(zφ|sφ = λφ) ∝ 1 +         
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where q is the prior probability of hypothesis H0. A 

typical edge-based observation along one normal line 

is shown in Fig. 2. Multiple peaks appear due to 

clutter. 

 

To reduce the clutter, HMM can easily integrate other 

cues, such as color histogram of the foreground (FG) 

and background (BG). Let v be the color, p(v|FG) and 

p(v|BG) represent the color distribution for the FG and 

BG respectively. If sφ = λφ is the contour point on line 

φ, we know that the segment [−N, sφ] of line φ is on 

the FG and the segment [sφ + 1,N] is on the BG. 

Combining the edge likelihood model and the color 

histogram of the FG/BG, we have the following 

multicue observation likelihood model: 

          P(Oφ|sφ) = p(zφ|sφ) · ∏
−=

ϕs

Ni

P(v = ρφ(i)|FG) · 

                ∏
+=

N

si 1ϕ

P(v = ρφ(i)|BG)                            (4) 

 
 

Fig. 2. One-dimensional edge-based observation 

p(zφ|sφ): z1, z2, ..., zJ are the detected edges along 

one normal line and cause a multiple peak edge-

based likelihood model 

 

 

2.2 Computing Transition Probabilities 

 
In addition to the observation model discussed in the 

previous subsection, another important component in 

the HMM is the transition probability. It determines 

how one state transits to another. In this subsection, 

we use the standard contour smoothness constraint to 

derive the transition probability. 

 

The contour smoothness constraint can be encoded in 

transition probability. To enforce the contour 

smoothness constraint in the HMM, the constraint 

needs to be represented in a causal form. In Fig. 1(a), 

we can see that when the normal lines are dense (30 

lines in our experiments), the true contour points on 

adjacent normal lines tend to have similar amounts of 

displacement from the predicted contour position 

(indexed as 0 on each normal line). This constraint is 

causal and can be captured by transition probabilities 

p(sφ|sφ−1) defined as follows: 

 

         p(sφ|sφ−1) = c · 
22

1 /)( sss
e

σϕϕ −−−
                       (5) 

 

where c is a normalization constant and σs regulates 

the smoothness of the contour. This transition 

probability penalizes sudden changes of the adjacent 

contour points, resulting in a smoother contour. 

 

 

2.3 Best Contour Searching by Viterbi Algorithm 

 

Given the observation sequence O = {Oφ, φ∈[1,M]} 

and the transition probabilities ai,j = p(sφ+1 = j|sφ = i), 

the best contour can be found by finding the most 

likely state sequence s
∗. This can be efficiently 

accomplished by the Viterbi algorithm (L.R. Rabiner 

et all., 1986): 

 

  (6) 

 

Let us define 

 

    V (φ, λ) = 
1

max
−ϕs  P(Oφ, sφ−1, sφ = λ)                (7) 

 

Based on the Markovian assumption, it can be 

recursively computed as follows: 

 

                                                                                 (8) 

 

                       
                                                                                 (9) 

 

with the initialization V (1, λ) = maxs1P(O1|s1)P(s1), 

where the initial state probabilities  

P(s1) =
12

1

−N
, s1 ∈  [−N,N].  

The term j*(φ, λ) records the “best previous state” 

from state λ at line φ. We therefore obtain at the end 

of the sequence maxs P(O, s) = maxλ V (M,λ). The 

optimal state sequence s∗ 
can be obtained by back 

tracking j∗, starting from 
*

Ms  = arg maxλ V (M,λ), 

with ),( ***

1 ϕϕϕ sjs =− . The computational cost of 

the Viterbi algorithm is O(M · (2N +1)). Unlike 

traditional active contour model (A.A. Amini et all., 

1990, J. Denzler et all, 1999), this method can give us 

the optimal contour without recursively searching the 

2D image plane. The best state sequence s∗ = {
*

1s  , 



..., 
*

Ms } will be used in the Unscented  Kalman Filter 

(UKF) to calculate the innovations and estimate the 

contour parameter. 

 

 

3 IMPROVING TRANSITION PROBABILITIES 

 

The transition probability is one of the most 

important components in an HMM. It encodes the 

spatial constraints between the neighboring contour 

points. In Sect. 2.2, we derive a simplified way of 

computing transition probabilities based on the 

contour smoothness constraint. Even though simple, 

it only considers the contour points themselves and 

ignores all the other pixels on the normal lines, which 

can be dangerous especially when the clutter also has 

smooth contour and is close to the tracked objects 

(e.g., the dark rectangle in Fig. 3(a)). To estimate the 

contour transition robustly, we should consider all 

detected edges jointly similar to the Joint probability 

data association (JPDAF) in (Y. Bar-Shalom et all., 

1988). We introduce joint probabilistic matching 

(JPM) into the HMM for calculating more accurate 

transition probabilities. With contexture information, 

the new transition probabilities are more robust. An 

efficient optimization algorithm based on dynamic 

programming is developed to calculate the JPM term 

in real time.  
 

 

3.1 Encoding Region Smoothness Constraint Using JPM 

 
Since the true contour can be any pixel on the normal 

line, we have to estimate the transition between the 

pixels on the neighboring normal lines. Let sφ and 

sφ+1 be the contour points on line φ and line φ + 1, 

respectively. These two contour points segment the 

two lines into foreground (FG) segments and 

background (BG) segments. If the object is opaque, 

the edges on FG cannot be matched to BG. To 

exploit this constraint, we need to track the 

transitions of all the pixels on FG/BG together. That 

is, it is not a matching of contour points only, but 

rather a matching of the whole neighboring normal 

lines. The transition probabilities based on this new 

matching paradigm enforce not only the contour 

smoothness but also region smoothness constraint 

and are therefore more accurate and robust to clutter. 

 

Let E
F
 (i, j) and E

B
(i, j) be the matching errors of the 

neighboring foreground segments (i.e., segment   

[−N, i] on line φ and [−N, j] on line φ + 1) and 

background segments (i.e., segment [i+1,N] on line φ 

and [j +1,N] on line φ + 1), respectively. Let δ(i) = j 

specify that pixel i on line φ should be matched to 

pixel j on line φ + 1 and δ() is monotonic (i.e., δ(i − 

1) <= δ(i)). Then, the matching cost is defined as: 

   E
F
 (i, j) = minδ ∑

−=

i

Nk

||ρφ(k) − ρφ+1(δ(k))||2,  

            δ(k) ∈  [−N, j]                                            (10) 

 

EB(i, j) = minδ ∑
+=

N

ik 1

||ρφ(k) − ρφ+1(δ(k))||2,  

      δ(k) ∈  [j + 1,N]                                             (11) 

 

A more accurate transition probability can then be 

estimated based on the matching cost (compare with 

Eq. (5)): 

 

log(p(s2|s1)) = E
F
 (s1, s2) + E

B
(s1, s2) + (s2−s1)

2
/

2

sσ                

                                                                             (12) 

 

The importance of the new matching cost can be 

illustrated by a synthesized image in Fig. 3. There are 

two regions where the grey region is the object to 

track and the darker rectangle is a background object. 

There are two adjacent normal lines shown in the 

figure, i.e., line 1 and line 2. Points ‘a’ and ‘b’ are 

detected edge points on line 1. Similarly, points ‘c’ 

and ‘d’ are detected edge points on line 2. Our goal is 

to find the true contour points on these two normal 

lines. The pixel intensities along these two lines are 

shown in Fig. 3(b). They are similar to each other 

except for some distortions. Based on the contour 

smoothness constraint only, the contour from ‘a’ to 

‘c’ and the contour from ‘b’ to ‘c’ have almost the 

same transition probabilities because  

 

|a − c| ≈ |b − c|. 

 

However, if we consider all the pixels on the normal 

lines together, we can see that ‘ac’ is not a good 

contour candidate because ‘b’ and ‘d’ are now on 

foreground and background respectively and they 

have no matching on the neighboring lines. The 

contour candidates ‘ad’ and ‘bc’ are better because 

they segment the two normal lines into matching 

FG/BG (The best choice between these two should 

be further decided based on Viterbi algorithm in 2.3.) 

 

The comparison between traditional smoothness 

constraint and JPM based smoothness constraint is 

shown in Fig. 3(c) and (d). Without joint matching 

terms, the contour is distracted by the strong edge of 

the background clutter in Fig. 3(c). In Fig. 3(d), the 

matching cost has large penalty for the contour to 

jump to background clutter and then jump back. 

Hence we obtain the correct contour. 

 

Unlike the uniform statistic region model in, our 

matching term is more relaxed. The object can have 

multiple regions (e.g., the side view of human head 

with face and hair as in the experiments), each of 

which has continuous boundaries. To illustrate this, 

another test is shown in Fig. 4 which has different 

intensity regions in the foreground. We can see the 

difference between Figs. 3 and 4: the observations on 

line 2 are not the same. There is no segment ‘cd’. No 

matter we match ‘c’ to ‘a’ or ‘b’, the other edge will 

have no matching part. Therefore, the matching cost  

 



 
 

Fig. 3. Illustration of the JPM: (a) Synthesized image 

with the grey object to track.(b) The observation 

on normal line 1 and 2. (c) Based on traditional 

contour smoothnessonly, the detection is 

distracted by strong continuous edges on the 

background.(d) With the JPM, the contour is 

correctly detected 

 

is the same for matching ‘a’ to ‘c’ or ‘b’ to ‘c’. The 

algorithm favors the result in Fig. 4(b) because it is 

smoother. 

 

 

3.2 Efficient Matching by Dynamic Programming 

 

To ensure real-time performance, we propose an 

efficient algorithm to calculate the JPM. There are 

(2N + 1)
2
 possible state transitions between the 

neighboring normal lines. We propose an efficient 

dynamic programming algorithm to calculate all   

(2N + 1)
2
 matching probabilities with 2 · (2N + 1)

2
 

computational cost.
 
 

 

Given observation on lines 1 and 2, the calculation of 

the matching probabilities can be explained in the 

following recursive equation: 

 

        E
F
 (i, j) = min(E

F
 (i−1, j) + d,E

F
 (i, j−1) +  

        d,E
F
 (i−1, j−1)) + e(i, j)                                 (13) 

 

 
 

Fig. 4. Foreground object with multiple regions: (a) 

The synthesized image. (b) Contour tracking with 

JPM. (c) The observation on line 1 and line 2  

 

where e(., .) is the cost of matching two pixels. E
F
(i,j) 

is the minimal matching cost between segment [−N, 

i] on line 1 and segment [−N, j] on line 2. We start 

from E
F
(−N, j) = E

F
(i,−N) = 0, where i, j∈   [−N,N] 

and use the above recursion to obtain the matching 

cost E
F
(i, j) from i = −N to N and j = −N to N. A 

similar process is used to calculate EB(i, j), but 

starting from E
B
(i,N) = E

B
(N, j) = 0 and propagate to 

E
B
(−N,−N). With all the matching cost, the state 

transition probabilities can be computed as in Eq.(12) 

and contour detection can be accomplished by the 

Viterbi algorithm. 

 

 

4 CONCLUSIONS 

 

Object tracking algorithms provide high-level 

semantic information about the objects in the videos 

and their motion trajectories and interactions, which 

can be very helpful in understanding the videos or 

classifying/querying the videos in the multimedia 

database. Initialization is necessary to start the 

tracking process. It can be done either manually or by 

an automatic object detection module (e.g. face 

detection (S.Z. Li, 2001). 

 

In the interactive video/multimedia framework, it is 

important that the tracking modules can be initialized 

easily. Some tracking methods require strict and 

precise initialization. For example, many color based 

tracking methods (e.g., S.T. Birchfield, 1998, D. 

Comaniciu et all., 2000]) require a typical object 

color histogram. In (S.T. Birchfield, 1998) a side 

view of the human head is used to train a typical 

color model of both skin color and hair color to track 

the human head with out-of-plane rotation. 

 

Another approach could be a HMM-UKF (Unscented 

Kalman Filter) framework that can be initialized by a 

rough bounding box indicating the object position 

and then adapt itself to the changing appearance or 

environments, which allows it to be easily integrated 

with external face detector or manual initialization.  

 

To future improve the tracking results, it is possible 

to combined the HMM modeling with particle filters 

to handle non-Gaussian systems and maintain 

multiple hypotheses during object tracking. 
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