

IVV TESTING MODEL FOR MOBILE APPLICATIONS

Eugen Dumitraşcu, Nicolae-Iulian Enescu, Gheorghe Marian

University of Craiova, Romania

eugen.dumitrascu@cs.ucv.ro, nicu.enescu@cs.ucv.ro, gheorghe.marian@cs.ucv.ro

Abstract: In this article, we present the specific features of mobile applications as

distributed applications. We enumerate the series of evaluation’s indicators of quality for

mobile applications. We also present the testing model IVV (Integration Verification and

Validation) and the IADT method (Inspection Analysis Demonstration and Test).

However, we refer especially to the functional type testing of GUIs (Graphical User

Interfaces) of some software applications and in particular of a mobile application.

Keywords: mobile application, verification strategy, IVV, IADT

1. INTRODUCTION

Software testing is an essential component in order to

achieve and improve a software quality and in all

software development. Software testing is

characterized by the existence of many methods,

techniques and tools that must fit the test situation,

including technical properties, goals and restrictions.

The software testing is a part of the software life

cycle and must be structured according to the type of

product, environment and language used. Software

testing has focused on two separate issues,

verification (static testing) and validation (dynamic

testing) (Enescu et al., 2005).

Verification is the process of evaluating a system or

component to determine whether the products of a

given development phase satisfy the conditions

imposed at the start of that phase. It is the process of

evaluating, reviewing, inspecting, and doing desk

checks of work products such as requirement

specifications, design specifications, and code (IEEE,

1983). Validation is the process of evaluating a

system or component during or at the end of the

development process to determine whether it satisfies

specified requirements. Verification and validation

are complementary (IEEE, 1983). Functional testing

verifies how the application works. In functional

testing, the tested data is selected according to the

reference functional specification.

2. MOBILE APPLICATIONS

An application is mobile if runs on a portable

computing device that is always or occasional

connected to a network. This definition includes

applications that run on portable computers like

notebooks, PDA (Personal Digital Assistant) or

mobile phones. It also implies forms of client-server

applications where the application that runs on that

type of device is a client application.

It is not necessary to have a permanent connection to

the network, some applications are written to be run

with an occasional connection to the network. Here

we distinguish three different types of connections

through which we can describe how an application is

connected to a server (Dumitraşcu, 2003):

- permanent connection – the application does not

function without connection to the network. So, the

server existence is critical for the client application.

For example, the application that runs on mobile

phone based on mini browsers HDML/WML or other

type of application ‘thin client’.

- permanent available – the application requires an

available connection to the network, but it runs even

if the connection is not available. This model is

referred to as disconnected occasional model. The

server existence is important but not critical.

- occasional connection – the application runs

without the network connection. The existence of a

server is rather optional.

The data synchronization has an important role in

mobile application (mApplications) that refers to the

exchange of data between two applications contained

in different stored zones. The synchronization is

important for the permanent available and occasional

models, whwreas without a connection to the

network the client and the server do not each indicate

the changes that occured.

The security is another important chapter of mobile

applications, especially in wireless communications

over the public network. The security is more than

cryptography of data; it refers to verifying the user’s

identity.

In this domain, it appeared a series of standards,

protocols and even virtual machins for mobile

applications, such as: WAP (Wireless Application

Protocol), SOAP (Simple Object Access Protocol),

SyncML, XHTML Basic, J2ME (Java 2 Micro Edition).

A mobile application is considered a client-server

application on three levels: on the first level it is the

client application that works on portable devices and

that is a graphic interface, most of the times a web

interface, based on a WAP protocol; the second level

or middle level contains applications that run on

different servers, for instance web servers, or a

mobile application server; the third level contains the

storage data level or diverse databases (Dumitraşcu,

E., 2003).

The quality of these applications is estimated by the

indicators or metrics for distributed applications on

multi-levels.

We enumerate some indicators for estimating a

quality of mobile applications (Dumitraşcu, 2004):

- the graphic quality of applications that refers to

the displayed mode of a user interface of a mobile

application. In this domain a series of standards,

protocols and even virtual machines for mobile

applications have appeared;

- the degree of communicating with a remote

server is given by the number of accesses in the time

unit of mobile client application to server. The

mobile applications didn’t have to be connected

 Fig. 1.The structure of a mobile application.

permanently to a network and that is why we

measure only the number of the accesses to the

network;

- the access time at the wireless network;

- the synchronization degree with different and

varied mobile applications.

3. VERIFICATION STRATEGY

The functional testing verification represents a part of

the testing process of software applications. The

functional verification has the following objectives:

to verify the behavior of application, to detect the

defects of software, to test robustness and the

performance of application in operational nominal

context and degraded context.

The verification strategy required for an item

(symbol or object of interface) defines four

categories of tests:

- Nominal – functional verification in nominal

mode

- Degraded – functional verification in degraded

mode

- Robustness – verification the functional

robustness

- Performance – verification of performance

The model used to test the functionality of an

application is IVV (Integration Verification and

Validation) and the main method is IADT

(Integration Analysis Demonstration and Test). The

objective of Integration is to assemble the software

product from the components, ensuring that it

functions properly. The objective of Verification is to

ensure that the final and intermediate software

product satisfy their technical requirement.

Verification covers nominal operation, but also

degraded operation and robustness, whether or not

that specifically related requirement is included in the

specification. The objective of Validation is to

determine that the software product satisfies the

requirements in its intended operational environment.

The IADT method represents:

- Inspection is a visual verification of an item.

- Analysis is a verification based upon analytical

evidences obtained by calculation, without

intervention on the verified item. The techniques

used are modeling, simulation and forecasting.

- Demonstration is a verification of operational

characteristic observable by the overseeing of the

functioning component without physical

measurement.

- Test is a verification of functional characteristics

that are measurable and directly or indirectly

reachable.

The nominal functional tests verify the nominal

behavior for an item in the context of valid data. In

this test, we verify the graphical interface for all

display states of item for nominal symbolism like

position, colors, shape, text; logic of display; and

the behavior for all operational values of inputs

data.

The degraded functional tests verify the degraded

behavior in the context of invalid data. In this test we

verify the graphical interface for all display states for

invalid symbolism; logic and behavior of display for

invalid inputs data.

The robustness tests verify how the operational

behavior of an item is not degraded when the input

data are out of operational context.

The performance tests verify how the operational

behavior of an item is not degraded when the input

data are forced to values limit.

For each item (symbol or object from user interface)

we create a top test procedure with tests according to

the described model presented above. Each top

procedure contains intermediate procedures and each

of these contains scenarios of test with one or many

test cases.

In case that many items form a part of the interface,

these are tested together. In same cases, one or many

procedures or scenarios could be absent.

4. EXPERIMENTAL RESULTS

To emphasize the verification strategy model

presented above we consider a mobile application

that receives the current GPS position and sends it to

a server to store the information about position into a

Fig. 2. Information of satellites

database to analyze the performed route

The most essential function of a GPS receiver is to

pick up the transmissions of at least four satellites

and combine the information in those transmissions

with information in an electronic almanac, all in

order to figure out the receiver's position on Earth.

Once the receiver makes this calculation, it can tell

you the latitude, longitude and altitude (or some

similar measurement) of its current position.

The graphical user interface that we refer to is

depicted in the Fig. 2, where we present the satellites’

positions and the color of strength of their signals,

data and GPS time, the coordinates (longitude,

latitude and altitude), the pointing of walk and the list

of satellites and their strength signal. The color of the

strength signal is set from the configuration signal

interface presented in the Fig. 3.

For the graphical interface of the application from

Fig. 2 we apply the verification strategy model for

certain symbols or graphical objects as latitude and

longitude.

LATITUDE (top procedure)

This symbol is a label, which indicates the latitude

received from satellite.

Graphical description for valid state:

- “Latitude” in black color

- “N” or “S” black flag

- 3 black digits, right justified, leading zero, for

degrees, followed by ° unit.

Fig. 3. Settings of the strength

- 2 black digits, right justified, leading zero, for

minutes, followed by ' unit.

- 2 black digits, right justified, leading zero, for

seconds, followed by black decimal point, 3 black

digits represent the thousandth of seconds and by ''

unit.

- located in right of the diagram with satellites

positions, below GPS time.

Graphical description for invalid state:

- “Latitude” in black color

- 3 black dashes followed by ° unit.

- 2 black dashes followed by ' unit.

- 2 black dashes followed by point, 3 black dashes

and '' unit.

The input parameter for latitude is positionLat that has

the operational range [-90°00'00.000'', +90°00'00.000'']

and the codable range [-80°00'00.000'',

+180°00'00.000''].

a) Valid state display and input increase in

operational range (Nominal and Regression

procedure)

i) Graphical display scenario

Test case no. 1: positionLat = +35°36'46.140''

Display in black “Latitude N 035°36'46.140'' ”

Test case no. 2: positionLat = -35°36'46.140''

Display in black “Latitude S 035°36'46.140'' “

ii) Increase input in operational range

Test case no. 1: positionLat from -90°00'00.000'' to -

0°59'59.999'' with step 0°00'00.001''

Display in black “Latitude S” and values according

with evolution from -90°00'00.000'' to -0°59'59.999''.

Test case no. 2: positionLat from 00°00'00.000'' to

+90°00'00.000'' with step 0°00'00.001''

Display in black “Latitude N” and values according

with evolution from 00°00'00.000'' to

+90°00'00.000''.

b) Input decrease in operational range (Nominal

procedure)

i) Decrease input in operational range

Test case no. 1: positionLat from +90°00'00.000'' to

0°00'00.000'' with step -0°00'00.001''

Display in black “Latitude N” and values according

with evolution from +90°00'00.000'' to 0°00' 00.000''.

Test case no. 2: positionLat from -0°59'59.999'' to -

90°00'00.000'' with step -0°00'00.001''

Display in black “Latitude N” and values according

with evolution from -0°59'59.999'' to -90°00'00.000''.

c) Invalid state display for invalid input (Degraded

and Regression procedure)

i) Invalid input

Test case no. 1: positionLat is invalid (not receive

from satellite) .

Display in black “Latitude ”, the flag “N” or “S” is

not displayed and 3 black dashes followed by ° unit,

then 2 black dashes followed by ' unit, then 2 black

dashes followed by point, 3 black dashes and '' unit.

Like that: “Latitude ---°--'--.---'' ”

d) Input increase outside operational range

(Robustness and Regression procedure)

i) Increase input outside operational range

Test case no. 1: positionLat from -180°00'00.000'' to

-90°00'00.001'' with step 0°00'00.001''

Display in black “Latitude S 090°00'00.000'' ”

Test case no. 2: positionLat from +90°00'00.001'' to

+180°00'00.000'' with step +0°00'00.001''

Display in black “Latitude N 090°00'00.000'' ”

e) Input decrease outside operational range

(Robustness procedure)

i) Increase input outside operational range

Test case no. 1: positionLat from +180°00'00.000'' to

+90°00'00.001'' with step -0°00'00.001''

Display in black “Latitude N 090°00'00.000'' ”

Test case no. 2: positionLat from -90°00'00.001'' to -

180°00'00.000'' with step -0°00'00.001''

Display in black “Latitude S 090°00'00.000'' ”

LONGITUDE (top procedure)

This symbol is a label, which indicates the longitude

received from satellite.

Graphical description for valid state:

- “Longitude” in black color

- “E” or “W” black flag

- 3 black digits, right justified, leading zero, for

degrees, followed by ° unit.

- 2 black digits, right justified, leading zero, for

minutes, followed by ' unit.

- 2 black digits, right justified, leading zero, for

seconds, followed by black decimal point, 3 black

digits represent the thousandth of seconds and by ''

unit.

- located in right of the diagram with satellites

positions, below Latitude.

Graphical description for invalid state:

- “Longitude” in black color

- 3 black dashes followed by ° unit.

- 2 black dashes followed by ' unit.

- 2 black dashes followed by point, 3 black dashes

and '' unit.

The input parameter for latitude is positionLong that

has the operational range and also the codable range

[-180°00'00.000'', +180°00'00.000''].

a) Valid state display and input increase in

operational range (Nominal and Regression

procedure)

i) Graphical display scenario

Test case no. 1: positionLong = +139°22'50.082''

Display in black “Longitude W 139°22'50.082'' ”

Test case no. 2: positionLong = -139°22'50.082''

Display in black “Longitude E 139°22'50.082'' “

ii) Increase input in operational range

Test case no. 1: positionLong from -180°00'00.000''

to -0°59'59.999'' with step 0°00'00.001''

Display in black “Longitude E” and values according

with evolution from -180°00'00.000'' to -

0°59'59.999''.

Test case no. 2: positionLong from 00°00'00.000'' to

+180°00'00.000'' with step 0°00'00.001''

Display in black “Latitude W” and values according

with evolution from 00°00'00.000'' to

+180°00'00.000''.

b) Input decrease in operational range (Nominal

procedure)

i) Decrease input in operational range

Test case no. 1: positionLong from +180°00'00.000''

to 0°00'00.000'' with step -0°00'00.001''

Display in black “Longitude W” and values

according with evolution from +180°00'00.000'' to

0°00' 00.000''.

Test case no. 2: positionLong from -0°59'59.999'' to -

180°00'00.000'' with step -0°00'00.001''

Display in black “Longitude E” and values according

with evolution from -0°59'59.999'' to -

180°00'00.000''.

c) Invalid state display for invalid input (Degraded

and Regression procedure)

i) Invalid input

Test case no. 1: positionLong is invalid (not receive

from satellite)

Display in black “Longitude ”, the flag “W” or “E” is

not displayed and 3 black dashes followed by ° unit,

then 2 black dashes followed by ' unit, then 2 black

dashes followed by point, 3 black dashes and '' unit.

Like that: “Longitude ---°--'--.---'' ”

Since the operational range is identical to codable

range, we don’t have Robustness test procedures.

5. CONCLUSIONS

The testing of software programs is done for two

reasons: detecting errors and estimating reliability.

It must be remembered the following three testing

principles:

- the testing is the process of running a program

with the intention for finding errors

- a good test is the one that has a higher probability

to detect a previously undiscovered error

- a successful test is the one that detects a previously

undiscovered error.

When the test produces a situation when the results

of the actual module do not match the expected

results, there are two possible explications: the

module contains an error or the expected results are

incorrect.

The integration and testing represent almost 40% of

programming engineering costs and the other 60% is

represented by the development costs. Therefore,

testing is an important phase in realizing the software

products.

The model IVV is a verification model, which

applies for diverse applications, namely mobile

applications, embedded applications, or other

applications that have a graphical user interface.

Some producers of embedded software for avionics

or mobiles apply this method in the testing process of

their software.

REFERENCES

Dumitraşcu, E. (2004). The indicators of evaluating

the quality for distributed applications. Paper

presented in the PhD program, A.S.E.,

Bucharest.

Dumitraşcu, E. (2003). Structures of distributed

applications. Paper presented in the PhD

program, A.S.E., Bucharest.

IEEE (1983), IEEE standard for software test

documentation: IEEE/ANSI standard 829–1983

Enescu, N., E. Dumitraşcu, I. Ivan, P. Sinioros

(2005). The Classification of Software Testing

Techniques. The Proceedings Of The Seventh

International Conference On Informatics In

Economy, p.1328-1333

Ivan, I., P. Pocatilu, C. Toma, A. Leau (2001). e3-

commerce: e-commerce, mobile application.

Aplicaţia e3com, in the review: Economical

Computing. Economical Computing Department

and the INFOREC Association, vol. V, No. 3

(19)/2001, p. 16 – 23

Myers, G. (1978). The art of software testing. John

Wiley & Sons Ed.

Ould, M., and Unwin, C. (1986). Testing in software

development, Cambridge Univ. Press.

Roper, M. (1994). Software testing, McGraw–Hill,

1994

Sommerville, I. (1996). Software engineering,

Addison–Wesley Ed.

