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1. INTRODUCTION 

 

Decision tree (DT) is a classification method used in 

Machine Learning and Data Mining. DT helps for 

various decision makings. DT is grown from a 

training dataset having samples with several 

attributes. An attribute can be either a continuous 

attribute (e.g. speed, price) or a nominal attribute 

(e.g. color, country). One of the nominal attributes is 

designated as the class attribute; its values are called 

class labels. The class label indicates the class to 

which each sample belongs.  

 

The result of the DT induction is symbolized as a tree 

which each non-leaf nodes tests an attributes and 

branches descending from that node specify attribute 

values. Leaf nodes of the tree correspond to subsets 

of samples with the same class label. The DT is 

grown by splitting the dataset at each non-leaf node 

according to an attribute selection measure. The 

primary task is to decide which of the attributes 

makes the best split. The best split is defined as one 

that does the best separating of the dataset into 

subsets where a single class label predominates in 

each subset.  

 

The objective of classification is to use the training 

dataset to build a model of the class label such that it 

can be used to classify new samples (e.g. test dataset) 

whose class labels are unknown. The classification 

error rate of the training dataset should be 

approximately equal to the test dataset; if not, the 

model may be too particular for the training dataset 

and not general sufficient. For a classifier, 

classification accuracy or the capability for 

separating classes is a central evaluation metric of its 

performance.  

 

Often, to prevent over-fitting and to improve the 

classification accuracy of the DT, the full grown tree 

is cut back in the pruning phase. Pruning phase 

removes subtrees that do not improve the 

classification accuracy.  Most of pruning methods are 

based on minimizing a classification error rate.  

 

One major aim of a classification task is to improve 

its classification accuracy. Classification accuracy 

estimates the degree of learning for a DT. The lower 

the classification error rate, the better the learning. In 

the same time, the enhancement of the classification 

accuracy improves the generalization capability of 

the DT. The quantitative behavior in terms of 

classification accuracy under different attribute 

selection measures and different databases can be 

assessed only in a large scale experiment, from which 

some meaningful statistics are extracted. The average 



classification error rate appears to be such a 

meaningful statistic which also has the advantage of 

being simple to compute and to illustrate. The 

experiments we have conducted to acquire such a 

statistic are described next. 

 

 

2. EXPERIMENTAL RESULTS 

 

There has been used 29 attribute selection measures 

on which the splitting of a node of the DT has to be 

realized.  

 

They are found in the literature, some of them being 

used in the induction of some very well-known DT. 

Attribute selection measures (Borgelt, 1998; 

http://fuzzy.cs.uni-magdeburg.de/~borgelt 

/dtree.html) used for induction, pruning and 

execution of DT are: information gain (ing) 

(Kullback and Leibler, 1951; Chow and Liu, 1968; 

Quinlan, 1986), balanced information gain (bing), 

information gain ratio (ingr) (Quinlan, 1993; 

Quinlan, 1986), symmetric information gain ratio 1  

(singr1) (Michie, 1990), symmetric information gain 

ratio 2  (singr2) (Borgelt, 2000), quadratic 

information gain (qing) (Borgelt, 2000), balanced 

quadratic information gain (bqing), quadratic 

information gain ratio (qingr), symmetric quadratic 

information gain ratio 1 (sqingr1), symmetric 

quadratic information gain ratio 2 (sqingr2), Gini 

index  (gini) (Breiman et al. 1984; Wehenkel, 1996), 

symmetric Gini index  (ginis) (Zhou and Dillon, 

1991), modified Gini index (ginim) (Kononenko, 

1994), RELIEF measure (relief) (Kira and  Rendell, 

1992; Kononenko, 1994), sum of weighted 

differences (swd), χ
2
 (hi2), normalized χ

2
 (hi2n), 

weight of evidence (wevd) (Michie, 1990; 

Kononenko, 1995), relevance (rlv) (Baim, 1988), 

Bayesian-Dirichlet/K2 metric (k2) (Buntine, 1991; 

Cooper and Herskovits, 1992; Heckerman et al., 

1995), modified Bayesian-Dirichlet/K2 metric (bd) 

(Buntine, 1991; Cooper and Herskovits, 1992; 

Heckerman et al., 1995), reduction of description 

length - relative  frequency (rdlrel) (Borgelt, 2000), 

reduction of description length - absolute frequency 

(rdlabs) (Borgelt, 2000), stochastic complexity (stc) 

(Krichevsky and Trofimov, 1983; Rissanen, 1987), 

specificity gain (sg), balanced specificity gain (bsg), 

specificity gain ratio (sgr), symmetric specificity gain 

ratio 1  (ssgr1) (Borgelt and Kruse, 1997), symmetric 

specificity gain ratio 2 (ssgr2) (Borgelt and Kruse, 

1997). 

 

The experiments presume the induction of the DT on 

a training dataset (in fact, there were induced 29 

different DT using 29 attribute selection measures at 

the splitting of a DT node), the pruning of a DT (the 

29 DT from the previous step are pruned, using two 

pruning methods: confidence level pruning and 

pessimistic pruning method) and finally, the DT 

execution on the test dataset – different data of the 

ones used at the training of the DT - to calculate the 

classification error rate of each DT.  

 

Our tests use four well-known databases from 

(Newman et al. 1998):  

- Abalone (number of samples: 4177, 3133 training 

and 1044 testing; number of attributes: 8, continuous 

and nominal, and class attribute rings with values: A, 

B, C; missing values: none);  

- Cylinder Bands (number of samples: 512, 412 

training and 100 testing; number of attributes: 40, 20 

numeric and 20 nominal, including the class attribute 

band type with values: band, no band; missing 

values: in 302 samples);  

- Image Segmentation (number of samples: 6435, 

4435 training and 2000 testing; number of attributes: 

36, all numeric, and the class attribute with values: 

A, B, C, D, E and G; missing values: none) from 

Statlog Project and  

- Monk’s Problem (we use in our tests only Monk-1 

problem: number of samples: 124 training and 432 

testing; number of attributes: 7, numeric, including 

class attribute; missing attribute values: none).  

 

The most important performance for the 

classification of the different DT, the classification 

accuracy on the test data, data completely unknown 

at the training of DT, has been noticed; this 

performance is expressed by classification error rate 

on the test data.  

 

 

2.1 Classification error rates for Cylinder Bands 

database 

 

The classification error rates are grouped together 

depending on the databases, oscillating with smaller 

or bigger amplitudes.  

 

Thus Cylinder Bands database has the biggest values 

for classification error rates with the biggest 

amplitudes between performances of different 

attribute selection measures.  

 

However, the qingr measure reaches unexpected low 

values (compared with the other measures) for the 

classification error rate: 16% (unpruned DT) and 

15% (pruned DT).  

 

The next performance on this database is reached by 

the ingr measure (34%: the classification error rate 

for the unpruned DT); which is more than double that 

the value reached by the qingr measure.  

 

If we are to compare the values of the classification 

error rate obtained by the qingr for the Cylinder 

Bands database and the three types of DT (16%, 

15% and 15%), with the averages obtained by all 

other measures (63.38%, 68.28% and 68%), it is 

ascertain that the qingr measure’s performance is 

about four times better. 

 



 
 

Fig. 2. The average classification error rate between 

the 12 types of values obtained at 4 databases 

only for unpruned DT 

 

 

2.2 Classification error rates for Abalone database 

 

Abalone database has relatively big values for the 

classification error rate, but with small amplitudes 

between the different values of this performance.  

 

 

2.3 Classification error rates for Image Segmentation 

database 

 

Image Segmentation database has no amplitudes 

between the values taken by the classifications error 

rate for different attribute selection measures.  

 

Thus, for unpruned DT and for pessimistic pruned 

DT, it is obtained the same value (16.80%) for the 

classification error rate, and for confidence level 

pruned DT the respective value is slightly smaller 

(15.95%). 

 

 

2.4 Classification error rates for Monk’s Problem 

database 

 

Monk’s Problem database has the best values for the 

classification error rate, but with significant 

amplitudes between the values of the performance, 

though smaller than the ones from Cylinder Bands 

database.  

 

Here the measure which systematically has the worst 

performance for the classification error rate on the 

test data is wevd (32.41% for unpruned DT, 27.78% 

for confidence level pruned DT and 36.37% for 

pessimistic pruned DT). To be noticed the second 

value which is significantly smaller then the other 

two.  

 

Three measures (qingr, ginim and relief) make the 

best possible performance: 100% for classification 

accuracy. It is the only database, from the ones taken 

into consideration, where this thing happens.  

 

Excepting these 4 measures mentioned close the 

other attribute selection measures slightly alternate 

between reasonable limits (between 8.33% and 

15.74%) with big values of the classification error 

rate for the confidence level pruned DT.  

 

We can say that the values of the classification error 

rate are almost the same at unpruned DT (average 

 

 

Fig. 1. The average classification error rate between 

the 12 types of values obtained at 4 databases and 

3 types of DT 



10.66%) and pessimistic pruned DT (average 

10.49%). 

 

 

2.5. Average classification error rate 

 

Fig. 1. presents the average accuracy of all 29 

attribute selection measures for all the 4 databases 

taken into account and for all 3 types of DT 

(unpruned, confidence level pruned and pessimistic 

pruned).  

 

By assuming the disadvantages which the 

arithmetical average presents as synthetically 

indicator, we can say that the qingr measure has a 

clear superior performance to any of the other 28 

measures considered. Its classification error rate on 

the test data is with almost 10% smaller (and almost 

1.5 better) than the value of the next performance, 

made by the relief measure.  

 

The classic measures like hi2 (CHAID algorithm) 

and gini (SLIQ algorithm) carry out, on the whole, 

the worst performances. Ing measure (ID3 algorithm) 

also carries out weak performances with 38.86%. The 

performance of 34.05% made by ingr measure (C4.5 

algorithm) places it at the middle of the classification 

(the 11
th

 from 23 positions). 

 

Fig. 2. presents the average accuracy of all 29 

attribute selection measures for all the 4 databases 

taken into account, but only for unpruned DT.  

 

The maximum value for the average classification 

error rate (38.20%) is the minimum value obtained 

for all three types of DT (unpruned, confidence level 

pruned or pessimistic pruned). 

 

Maintaining its leading position the qingr measure 

demonstrates - as we can see from the next figures 

(Fig. 3. and Fig. 4.) - for unpruned DT the weakest 

average performance for the accuracy of the 

classification on the test data. This performance 

improves as long as the pruning of the DT takes 

place, which is a very good thing from two points of 

view: we obtain a more compact DT which classifies 

better. 

 

Fig. 3. presents the average accuracy of all 29 

attribute selection measures for all the 4 databases 

taken into account, but only for confidence level 

pruned DT. The best performance for classification 

error rate for all databases used and for all types of 

DT tested is obtained here, for confidence level 
 

 

Fig. 3. The average classification error rate between 

the 12 types of values obtained at 4 databases 

only for confidence level pruned DT 

 

 

 
 

Fig 4. The average classification error rate between 

the 12 types of values obtained at 4 databases 

only for pessimistic method pruned DT 



pruning (17.63%). But in the same time, the worst 

performance for classification error rate for all 

databases used and for all types of DT tested is 

obtained here, for confidence level pruning (39.93%). 

 

Fig. 4. presents the average accuracy of all 29 

attribute selection measures for all the 4 databases 

taken into account, but only for pessimistic pruned 

DT. For both types of pruned DT (confidence level 

and pessimistic) the gini measure occupies the last 

position with the worst performance for the accuracy 

of the classification on the test data. 

 

 

3. CONCLUSIONS AND FURTHER WORK 

 

We have investigated carefully the average 

classification accuracy performance of three types of 

DT: unpruned, confidence level pruned and 

pessimistic pruned. Our experiments use 29 different 

attribute selection measures and 4 different 

databases. 

 

From all figures (Fig. 1, 2, 3 and 4) we can see that 

the first place is occupied by qingr measure and the 

second place is occupied by relief measure. 

Therefore we will use these two attribute selection 

measures for future research. For two types of pruned 

DT (Fig. 3 and 4) the third position is occupied by 

k2, bd and rdlabs measures. Ingr measure is placed 

on the third position for unpruned DT, but with 

pruning of the DT he goes down on the 13
th

 position. 

The stc measure, with an exception (see Fig. 2, for 

unpruned DT, when ingr measure goes up on the 

third position and the stc measure occupies the 5
th

 

position) occupies the fourth position.  

 

We must to mention a limitation of our conclusions: 

in evaluation by classification accuracy we have 

assumed equal error costs, but in the real world this is 

not always true. Further work is also needed to assess 

the performance of the 29 attribute selection 

measures used above on bigger datasets and with 

other pruning methods. 
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