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Abstract: One of the major tasks in Data Mining is classification. The growing of 

Decision Tree from data is a very efficient technique for learning classifiers. The 

selection of an attribute used to split the data set at each Decision Tree node is 

fundamental to properly classify objects; a good selection will improve the accuracy of 

the classification. In this paper, we study the behavior of the Decision Trees induced with 

14 attribute selection measures over three data sets taken from UCI Machine Learning 
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1. INTRODUCTION 
 

One of the major tasks in Data Mining (DM) is 

classification. The target of classification is to assign 

an object, from a data set, to a class, from a given set 

of classes, based on the attribute values of this object. 

The growing of Decision Tree (DT) from data is a 

very efficient technique for learning classifiers. The 

selection of an attribute used to split the data set at 

each node of the DT is fundamental to properly 

classify objects; a good selection will improve the 

accuracy of the classification. Different attribute 

selection measures were proposed in the literature 

(e.g. ID3 and C4.5 select the split attribute that 

minimizes the information entropy of the partitions, 

while SLIQ and SPRINT use the Gini index 

(Breiman et al. 1984; Wehenkel, 1996)) but it is not 

evident which of them will generate the best DT for a 

particular data set. In this paper, we study the 

behavior of the DT induced with 14 attribute 

selection measures over three data sets taken from 

UCI Machine Learning Repository. 

 

The rest of the paper is organized as follows. First we 

present the attribute selection measures used in this 

paper and the related work in Section 2. Then we will 

discuss the behavior of the attribute selection 

measures on the growing, pruning and execution of 

the DT over the three databases: Abalone, Cylinder 

Bands and Image Segmentation (Section 3). Finally, 

we conclude the work with a discussion of future 

work (Section 4).  

 

 

2. ATTRIBUTE SELECTION MEASURES. 

RELATED WORK 

 

In this section we briefly describe the attribute 

selection measures used in our performance tests. For 

a data set S containing n records the information 

entropy  
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is defined as where Pi is the relative frequency of 

class i (there are K classes). For a split dividing S into 

m subsets: S1 (n1 records), … , Sm (nm records) in 

accordance with the attribute test X, the information 

entropy is:  
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The difference: 
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measures the information that is gained by splitting S 

in accordance with the attribute test X. The attribute 

selection measure used by ID3 (Quinlan, 1986): gain 

criterion, selects an attribute test X to maximize ing, 

i.e., this attribute selection measure will choose an 

attribute X with the highest ing. Ing has one severe 

lack: a clear discrimination in favor of attribute tests 

with many outputs. For this reason C4.5 (Quinlan, 

1993), instead of ing, uses another attribute selection 

measure: information gain ratio (ingr): 
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represents the potential information generated by 

splitting data set S into m subsets Si (Kantardzic, 

2003). 

 

The Gini index (gini) for a data set S is defined as  
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and for a split:  
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Modified Gini index (ginim) (Kononenko, 1994) is 

highly correlated with gini index, so for an attribute 

X: 
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The Gini index may be normalized in order to 

remove a bias towards multi-valued attributes; it is 

obtained another attribute selection measure, 

symmetric Gini index (ginis) suggested in (Zhou and 

Dillon, 1991) and presented in a large context of 

many attribute selection measures by Borgelt (2000): 
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Testing many attribute selection measures (Wang et 

al. 2007) affirm that most of the measures yield 

reasonable results, however, the symmetric Gini 

index maximized the DT accuracy.  

 

In accordance with Mantaras (1991) symmetric 

information gain ratio (singr) grows smaller DT than 

the ingr, particularly in the case of samples with 

multi-valued attributes. This attribute selection 

measure is established on a distance between 

partitions such that the selected attribute in a node 

induces the partition which is nearest to the proper 

partition of the subset of training samples matching 

to this node.  

The same set S is divided in two partition: a partition 

SA whose classes will be denoted Ai for 1 <= i <= n 

and a partition SB, whose classes will be denoted Bj 

for 1 <= j <= m. Let the probabilities: 
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The average information of partition SA (respectively 

SB) which measures the randomness of the 

distribution of elements of S over the n (respectively 

m) classes of the partition is: 
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The mutual average information of the intersection of 

two partitions BA PP ∩ is: 
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and the conditional information: 
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Finally it obtains two distances between partitions: 

 

1. The metric distance measure: 

)/()/(),( BAABBA PPIPPIPPd +=           (18) 

 

2. The normalization distance in [0,1]: 
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Let K be the number of classes, A the number of 

attributes and V the number of values of a given 

attribute. Let n.. the number of samples, ni. the 

number of samples from class Ci, n.j number of 

samples with the j
th

 value of the given attribute, and 

nij the number of samples from class Ci with the j
th

 

value of the given attribute. Let the following 

probabilities: Pi j = nij / n.., Pi. = ni. / n.., P.j = n.j / n.., 

and Pi|j = nij / n.j. 

 

Let us consider the following entropies: IK of the 

classes, IA of the values of the given attribute, IKA of 

the joint events class-attribute, and IK|A of the classes 

given the value of the attribute, where: 
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An attribute selection measure, the average absolute 

weight of evidence (wevd) (Kononenko, 1995; 

Michie, 1990), is based on plausibility which is an 

alternative to entropy. Let odds = P/(1-P). For two-

class problems the measure is defined as follows: 
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and it holds wevd1 = wevd2. For multi-class problems 

the measure is defined as follows: 
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Attribute selection measure relief (Kira and  Rendell, 

1992; Kononenko, 1994) estimates the quality of 

attributes and deals well with strongly dependent 

attributes. This algorithm searches for the closest 

samples from the same class and the closest samples 

from different classes.  

 

Baim (1988) has proposed the relevance (rlv) of an 

attribute, defined by: 
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where for a given attribute value j: 
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White and Liu (1994) have given the following 

formula for statistical measure χ
2 

(hi2) with 

(V-1)(K-1) degrees of freedom:  
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K2 metric (Cooper and Herskovits, 1992) and BD 

metric (Buntine, 1991; Heckerman et al., 1995) (k2 

& bd) were originally developed for learning 

Bayesian networks. Other attribute selection 

measures used in our experiments are stochastic 

complexity (stc) (Krichevsky and Trofimov, 1983; 

Rissanen, 1987) and symmetric specificity gain ratio 

(ssgr) (Borgelt and Kruse, 1997). 

 

 

3. EXPERIMENTAL RESULTS 

 

For the growing of the DT, several attribute selection 

measures have been tried. The experiments presume 

the growing of the DT on a training data set (in fact, 

there were induced 14 different DT using 14 attribute 

selection measures at the splitting of a DT node), the 

pruning of a DT (the 14 DT from the previous step 

are pruned, using two pruning methods: confidence 

level pruning and pessimistic pruning method) and 

finally, the DT execution on the test data set – 

different data of the ones used at the training of the 

DT - to calculate the classification error rate of each 

DT. Our tests use three well-known databases from 

(Newman et al. 1998): Abalone, Cylinder Bands and 

Image Segmentation from Statlog Project. Along 

with the performance of the file size for every DT 

induced with an attribute selection measure, we have 

also studied the behavior of the height and the 

number of nodes of every DT. The most important 

performance for the classification of the different 

DT, the classification accuracy on the test data, data 

completely unknown at the training of DT, has been 

noticed; this performance is expressed by 

classification error rate on the test data. 

 

 

3.1 Abalone database 

 

Number of instances: 4177 (3133 training, 1044 

testing); number of attributes: 8 (continuous and 

nominal) and class Rings (with values: A, B, C); 

missing values: none. 

 

From Table 1 we can see that the stc measure 

presents the smallest classification error rate 

(40.61%) and the ginim the biggest (44.83%). Ingr 

measure shows the biggest values for DT file size, 

height and number of DT nodes; after pruning, for 

this measure, the values for the file size and the 

number of nodes decrease, but the height of the DT 

remains the same (see Table 1, 2 and 3). 

 

From Table 2 we can see that the rlv measure 

presents the smallest classification error rate 

(40.23%) and the gini the biggest (43.87%). It can be 

noticed a decrease of the classification error rates 

along with the pruning of DT for all the measures 

 

Table 1. Abalone. DT growing performances 

 

Measure 
File size 

[kB] 
Height 

#  

nodes 

Error rates 

[%] 

bd 67 36 980 42.62 

gini 59 19 1002 44.16 

ginim 53 15 997 44.83 

ginis 57 18 985 41.95 

hi2 64 21 1041 44.35 

ing 64 24 1037 42.91 

ingr 398 144 1402 44.54 

k2 67 36 980 42.62 

relief 53 20 951 43.10 

rlv 61 14 1151 41.57 

singr 78 29 1098 43.97 

ssgr 77 34 1283 43.01 

stc 100 58 1156 40.61 

wevd 42 15 760 43.39 



Table 2. Abalone. DT confidence level pruning 

performances 

 

Measure 
File size 

[kB] 
Height 

#  

nodes 

Error rates 

[%] 

Bd 57 36 835 42.05 

gini 45 18 767 43.87 

ginim 42 14 817 42.34 

ginis 48 18 834 41.86 

Hi2 50 21 823 43.39 

ing 55 22 889 42.91 

ingr 362 144 1202 43.30 

k2 57 36 835 42.05 

relief 43 17 788 41.19 

rlv 48 14 901 40.23 

singr 65 29 929 43.39 

ssgr 45 15 788 41.00 

stc 87 58 992 40.42 

wevd 39 15 706 42.72 

 

 

(see Table 1, 2 and 3). The average of the 

classification error rates is 43.12% for unpruning DT, 

42.19% for confidence level pruning DT and 42.48% 

for pessimistic pruning DT. 

 

From Table 3 we can see that the stc measure 

presents the smallest classification error rate 

(40.33%) and the ingr the biggest (43.87%).  

 

 

Table 3. Abalone. DT pessimistic pruning 

performances 

 

Measure 
File size 

[kB] 
Height 

#  

nodes 

Error rates 

[%] 

Bd 62 36 910 42.43 

gini 54 19 907 43.58 

ginim 48 14 916 43.68 

ginis 53 18 911 41.95 

hi2 57 21 937 43.39 

ing 62 24 997 42.72 

ingr 379 144 1282 43.87 

k2 62 36 910 42.43 

relief 47 20 850 42.43 

rlv 56 14 1042 40.42 

singr 72 29 1025 43.49 

ssgr 53 17 918 41.76 

stc 95 58 1094 40.33 

wevd 37 15 674 42.24 

 

With four exceptions (gini, ing, stc, wevd) the 

confidence level pruning method produces DT with 

better classification error rates than pessimistic 

pruning method (see Table 2 and 3).  

 

The correlation coefficients from Table 1, 2 and 3 

between classification error rates and the file size 

(0.266, 0.240, 0.302), the height (0.137, 0.181, 

0.219) and the number of nodes (0.006, 0.030, 0.035) 

of DT are very small indicating that file size, height 

or number of nodes of the DT have no influence 

upon classification accuracy. 

 

 

3.2 Cylinder Bands database 

 

Number of instances: 512 (412 training, 100 testing); 

number of attributes: 40 (20 numeric, 20 nominal) 

including the class attribute band type (with values: 

band, no band); missing values: in 302 samples. 

 

From Table 4 we can see that the ingr measure 

presents the smallest classification error rate (34%).  

From Table 4, 5 and 6 we can see that a group of 7 

measure (hi2, gini, ginim, ginis, ing, singr, rlv) 

induce DT with very big classification error rates 

(81%) and aren’t able to properly prune the DT 

having only one node and huge values (86%) for 

classification error rates. 

 

From Table 5 we can see that two measures k2 and 

bd achieve the smallest classification error rate (39%) 

an improved performance vs. unpruned DT (see 

Table 4). 

 

 

 

Table 4. Cylinder Bands. DT growing performances 

 

Measure 
File size 

[kB] 
Height 

#  

nodes 

Error rates 

[%] 

bd 7 12 94 42 

gini 12 2 357 81 

ginim 12 2 357 81 

ginis 12 2 357 81 

hi2 12 2 357 81 

ing 12 2 357 81 

ingr 23 9 363 34 

k2 7 12 94 42 

relief 8 10 117 45 

rlv 12 2 357 81 

singr 12 2 357 81 

ssgr 13 11 298 75 

stc 7 14 95 44 

wevd 6 9 70 55 

 

 



Table 5. Cylinder Bands. DT confidence level 

pruning performances 

 

Measure 
File size 

[kB] 
Height 

#  

nodes 

Error rates 

[%] 

Bd 7 12 84 39 

gini 1 1 1 86 

ginim 1 1 1 86 

ginis 1 1 1 86 

hi2 1 1 1 86 

Ing 1 1 1 86 

ingr 2 8 11 80 

k2 7 12 84 39 

relief 6 10 94 50 

Rlv 1 1 1 86 

singr 1 1 1 86 

ssgr 3 10 25 83 

Stc 6 13 74 46 

wevd 5 9 66 56 

 

 

From Table 6 we can see that two measures k2 and bd 

achieve the smallest classification error rate (39%) an 

improved performance vs. unpruned DT (see Table 4). 

 

The correlation coefficients from Table 4, 5 and 6 

between classification error rates and the file size 

(0.129, -0.985, -0.988), the height (-0.859, -0.867, 

-0.861) and the number of nodes (0.737, -0.974, 

-0.977) of DT are very big indicating that file size, 

height or number of nodes of the DT have a great 

influence upon classification accuracy. Indeed a DT 

with 1 node produces a huge classification error rate 

and this result is not in contradiction with the result 

of previous database. 

 

Table 6. Cylinder Bands. DT pessimistic pruning 

performances 

 

Measure 
File size 

[kB] 
Height 

#  

nodes 

Error rates 

[%] 

bd 7 12 92 39 

gini 1 1 1 86 

ginim 1 1 1 86 

ginis 1 1 1 86 

hi2 1 1 1 86 

ing 1 1 1 86 

ingr 2 8 15 80 

k2 7 12 92 39 

relief 7 10 108 46 

rlv 1 1 1 86 

singr 1 1 1 86 

Measure 
File size 

[kB] 
Height 

#  

nodes 

Error rates 

[%] 

ssgr 3 11 35 80 

stc 6 13 82 46 

wevd 5 9 66 56 

 

 

3.3 Image Segmentation database 

 

Number of instances: 6435 (4435 training, 2000 

testing); number of attributes: 36 (all numeric) and 

the class attribute (with values: A, B, C, D, E and G); 

missing values: none. 

 

For all the 14 measures the values of the 

performances (file sizes, heights, number of nodes of 

DT or classification error rates) are the same for the 

unpruned DT, for the confidence level pruned DT or 

for the pessimistic pruned DT (see Table 7). 

Confidence level pruning method improves the 

accuracy of the classification (15.95% vs. 16.80%), 

but the pessimistic pruning method keeps the same 

value for classification error rates like the unpruned 

DT (see Table 7). But with pessimistic pruning 

method we achieve better values for DT file size (103 

kB vs. 107 kB) and better values for the DT nodes 

number (685 vs. 701). Confidence level pruning 

acquires also small values for the DT file size (70 kB 

vs. 107 kB), small values for the DT heights (62 vs. 

81) and small values for the DT nodes number (529 

vs. 701). 

 

Table 7. Image Segmentation. DT performances 

 

DT 
File size 

[kB] 
Height 

#  

nodes 

Error rates 

[%] 

unpruned 107 81 701 16.80 

confidence 

level 

pruned 

70 62 529 15.95 

pessimistic 

pruned 
103 81 685 16.80 

 

 

4. CONCLUSIONS AND FURTHER WORK 

 

The experiments accomplished targeted the growing, 

the pruning, the execution of the unpruned and the 

pruned DT on the test data. We tried to study the 

behavior of DT grown with 14 different attribute 

selection measures and in the same time the 

classification accuracy on the test data of these trees. 

In our experiment we use 3 databases from literature 

with different types of attributes, numeric and 

nominal (Abalone, Cylinder Bands) and with missing 

values and large number of attributes (Cylinder 

Bands).  

The best performance for the average classification 

error rate is accomplished by k2, bd (41.18%), stc 

(42.89%) and relief (44.62%) measures. They are 



followed by a group of two measures wevd (49.23%) 

and ingr (54.29%) with medium values for the 

classification error rates. The measures which have 

the worst performances for the average classification 

error rate on the test data are ssgr (60.63%), rlv 

(62.54%), ginis (63.13%), ing (63.59%), ginim 

(63.98%), singr (63.98%), hi2 (64.02%) and gini 

(64.10%). 

 

The values of performance are influenced by the 

intrinsic features of each database; for certain 

databases some measures crash, for others all the 

measures have the same values for all the 

performances taken into account. 

 

The experiments we wish to perform next will target 

much larger databases with many attributes and many 

samples on which we want to verify the 

performances of much more attribute selection 

measures. 
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