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Abstract: We shall demonstrate a method for reducing n-dimensional dynamical
systems to 1-dimensional ones by using a symbolic, 2-adic representation of the
states. The dynamics will then appear as a 1-dimensional graph and periodic
points and other invariant sets can be found. Applications to the evaluation of
switching surfaces in bang-bang control will be given.
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1. INTRODUCTION

In this paper, we will show how to obtain a one-
dimensional representation of an n-dimensional
dynamical system, which captures the essential
behaviour of the system, such as periodic solu-
tions, invariant sets, etc. in a visually simple form.
Each point in the n − D space has a unique
representation in the corresponding 1 − D space
if we remove certain points from the n−D space.
Hence, all information of the dynamical system
will be contained in a graph which is easier to ob-
serve. To illustrate the application of the method
to control these we shall consider the problem
of time-optimal control, and show that it makes
the generation and visualisation of the switching
manifolds relatively easy.

We shall present a simple way of finding the
switching curve/surface of time-optimal Bang-
bang control in Section 3. And then two examples

in 2-dimensional and 3-dimensional cases will be
given in Section 4.

2. ONE-DIMENSIONAL REPRESENTATIONS
OF N-DIMENSIONAL SYSTEMS

The basic idea consists of using a symbolic, 2-adic
representation of the states of an n-dimensional
dynamical system

ẋ = f(x) (1)

where f : E → <n and E is an open subset of <n,
to get a 1-dimensional map.
To do this, we first normalise the dynamical
system. Put

xi =
1
π

[arctan(αyi)] +
1
2
, i = 1, 2, · · · , n

which maps <n into IN , where I = [0, 1] and
IN = I × · · · × I.



In a 2-dimensional system’s case, we can map I2

to I in the following way:

(x1, x2) ∈ I2 −→ x̃1x2 ∈ I

where x̃1x2 is given as follows:
Write x1, x2 in their binary forms

x1 = 0.b1b2b3 · · · · · ·
x2 = 0.c1c2c3 · · · · · ·

and define

x̃1x2 = 0.b1c1b2c2b3c3 · · · · · · ,

we get a map ν : I2 −→ I, ν(x1, x2) = x̃1x2.

If we remove all points ending with infinite num-
ber of 1s, i.e. · · · 1111111 · · · for both x1 and x2

in the 2 − D plane, in other words, we chop out
all double-valued points (Xu, Song and Banks),
then all other points have unique representations
on the 1−D system according to the map ν̃:

I2\S ν̃−−−−→ I

where S is the set of all double-valued points in
2−D plane which is a countable subset S ⊆ I2.

Conversely, by removing all points of the form
· · · 1 • 1 • 1 • 1 • 1 · · · on the 1 −D plane, we got
a unique correspondence on 2 − D plane of all
remaining points. Since those points are not all
double-valued and the set U of them is certainly
uncountable, not every point on 1−D plane has
representation on 2−D plane, i.e. there is a 1− 1
map ˜̃ν:

I2\S ˜̃ν−−−−→ I\U
where U ⊆ I.

Since <2 and < are topologically inequivalent
(Crutchfield, 1994), the phenomenon above can
be explained by the discontinuity of ˜̃ν, so that we
see two points which are arbitrarily close in I2\S
can be far away in I\U .

If we discretise a dynamical system in the form of
(1) (but just for 2-dimensional case) to be

xk = Fh(xk−1) (2)

where xk = (xk1, xk2), and h is the step-length,
then the map f between two states X0 and X1 in
the original system becomes a map Fh from B0 to
B1, where B0, B1 ∈ I2\S.
Let Ñ be a nonlinear map from D0 to D1, deter-
mined by Fh in 2−D space, where D0, D1 ∈ I\U ,
which makes the diagram

B0

˜̃ν−−−−→ D0

Fh

y Ñ

y

B1

˜̃ν−−−−→ D1

commutative.

By applying the map Ñ q times, which gives
the function Ñq, we have a graph showing some
interesting behaviours of the dynamical system,
such as equilibrium points and periodic orbits
(Xu, Song and Banks).

A picture of the function Ñq (also depends on the
step length h, of course) of Van-der-Pol oscillator
is shown below:

Fig.1 Ñq of Van-der-Pol oscillator

Points on the diagonal of the graph of Ñq clearly
represent the periodic points in the original dy-
namical system. We can also get an iterated pic-
ture starting from an initial point which is on
the periodic orbit, showing the periodic trajectory
mapped into 1−D space (Lind and Marcus, 1995).

Fig.2 A periodic orbit



For simplicity, we only considered the 2−D case
above, however, the same method applies for n−D
dynamical systems.

Theorem 1. There exists a countable subset S ⊆
IN and an uncountable subset U ⊆ I such that
the induced map ˜̃ν:

IN\S −→ I\U
is 1− 1.

For instance, we can obtain a iterated graph
showing the chaotic behaviour starting from a
random initial point of Lorenz-Attractor.

Fig.3 Iterated graph of Lorenz-Attractor

3. THE TIME-OPTIMAL CONTROL
PROBLEM

It is well-known (see (Pontryagin, 1962)) that for
a linear system

ẋ = Ax + Bu (3)

with hard constraint |u| ≤ 1, the time-optimal
problem has solutions with at most n−1 switches.
In high dimensions the switching manifolds are
difficult to visualise. Hence we apply the above
technique to plot the switching manifolds in 1-
dimensional spaces.

For a point on the switching line, no switch is
necessary. Simply use the appropriate control to
get to the origin. For any other point, following
the control curve first until it hits the switching
line (the opposite type of control), then switch to
the second one and the solution goes to the origin.
In order to reach the origin in minimum time, we
use the least number of switches. Obviously, in a
2 − D Bang-bang control system, only 1 switch

is needed at most. Hence the problem becomes
how to determine the switching curve in the phase
plane and decide when to switch.
The situation for 3 − D systems is a bit more
complicated, but we can still reduce the problem
into finding the switching curve and also the
switching surface.

It is not so easy to achieve the positions of
switching manifolds by using traditional ways,
especially when the dimensions of the systems
increase. Nonetheless, if we map the n−D system
into a 1−D plane introduced before, there appears
a applicable way of solving this difficult problem.

Theorem 2. To determine the control of a linear
dynamical system

ẋ = f(x, u)

with f ∈ C1(E) where E is an open subset
of <n, n 1 − D space graphs are needed. The
first graph always indicates the location of the
switching line; the (n − 1)th one shows exactly
the n− 1 Dimensional Switching Manifold of the
control system and the initial control status is
contained in the nth plot.

4. EXAMPLES

In this section we shall give two simple examples
of Bang-bang time-optimal control systems. By
applying the idea illustrated in Sections 2 and 3,
plots containing information of switching curve,
switching surface, and also first control state can
be easily obtained.

Example1. For a 2-dimensional Bang-bang con-
trol system of the form:

ẋ1 = 2x2

ẋ2 = u = ±1

we get two plots shown in fig 4 below.

Fig.4

Red bars in the first plot correspond to points
in half of the switching line using −1 control on
the original 2−D plane; and black bars represent
points in the other half (+1 control). In the second
plot, points in the red region can reach the origin
by using −1 control first, then switching into +1
control when hit the switching line. Conversely,
points in the black area will need +1 then −1
controls to get to the origin.



Example2. Similarly, in a 3-dimensional Bang-
bang control system

ẋ1 = x2

ẋ2 = x3

ẋ3 = u = ±1

three graphs can be got in fig5.

Fig.5

Again, red and black bars in graph 1 denote the
switching curve in the 3 − D space while for
these points, no switch is needed; red and black
regions in the second graph suggest the switching
surface in the original space and only one switch
of control is necessary for points here; the third
graph presents initial control values for all other
points which need two switches.

5. CONCLUSIONS

We have demonstrated a method for encoding
solutions of an n-dimensional system in a one-

dimensional space by a certain map ˜̃ν. We have
also shown how to use this idea to visualise
the switching manifolds of linear time-optimal
control systems. In a future paper we shall study
the continuity property of the map ˜̃ν and also
apply this idea in controlling higher-dimensional
nonlinear systems.
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