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Abstract:  In the present paper the 2H  control problem objectives are defined in 

terms of Linear Matrix Inequalities (LMI) for a class of linear systems with multiple 

delays. An output feedback controller synthesis procedure is then proposed together 

with an optimization procedure. The classical 2H  output feedback synthesis 

problem is formalized for TDS in terms of a Lyapunov based approach (for the first 

time to our knowledge). A new manner of solving the nonlinear bounding condition 

of the closed loop is proposed without using the Projection Lemma (traditionally 

employed in similar situations). This is used to compute a feasible initial set of the 

weight matrices for the Lyapunov functional that will be the starting point of an 

alternating iterative procedure that solves the 2H  optimization problem, which is 

proposed in the end. A numerical example illustrating the use of this procedure for a 

second order system with two delays is then presented with some conclusions. We 

declare that the paper is ORIGINAL, that WE ARE THE AUTHORS of the work,  

that  the above work HAS  NOT  BEEN  PREVIOUSLY PUBLISHED ELSEWHERE 

and that we allow the reproduction and distribution of the article within the 

proceedings of  The International Symposium SINTES 13, 18-20 October 2007 

Craiova, Romania and in the publications associated wit this scientific event. 
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1. INTRODUCTION 

 
In the last years the problems related to the Time 

Delay Systems (TDS) have received an increasing 

interest from the scientific community due to the big 

number of potential applications and the 

development of some modern computational tools. 

This attention has resulted in significant advances in 

this field of study. The Lyapunov based approaches 

have become the backbone of a considerable number 

of results regarding classical control problems like 

the stability (see for example (Kolmanovskii and 

Richard, 1999), (Fridman and Shaked, 2003), 

(Michiels et al., 2005) or (Dugard and Verriest, 

1998)), the quadratic guaranteed cost (Moheimani 

end Petersen, 1995) or the ∞H  control problem (see 

(Serbanescu and Popeea, 2004) or (Jeung et al., 

1998)). Due to the way in which the final conditions 

are derived, we can consider that this result is also 

related to the family of Lyapunov based approaches. 

The present paper is approaching the 2H  synthesis 

control by formalizing the control objectives in terms 

of two Linear matrix Inequalities or LMI’s. The 

approach is original to the extent of our knowledge 

and it is presenting an optimization procedure for the 

pure 2H  problem. The computation, in the incipient 



faze of the optimization procedure, of a feasible set 

for the Lyapunov weight matrices is done in an 

original way without using the Projection Lemma, 

solution traditionally employed in similar situations 

like for example in the case of the output feedback 

∞H  synthesis. Once formalized, the problem is then 

solved numerically with the help of the Semidefinite 

Programming (SDP). 

  

 

2. THE 2H  CONTROL PROBLEM 

 

In the present paper we will try to minimize a norm 

of the performance output signal in the case of the 

Time Delay Systems (TDS). In order to do that we 

will illustrate first how we can formalize the 2H  

control problem in the case of TDS by creating an 

analogy with the classical case of the linear delay 

free systems.  

Let us consider first a simple delay free system, 

described by the following set of equations: 
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where 
nx R∈  is the state vector, 

mw R∈  is the 

exogenous input and 
pz R∈  is the controlled 

output. 

We will define the set of reachable states with unit-

energy inputs as being: 
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and we will try to bound ueR  by ellipsoids of the 

form 

{ }.0,1 >≤= PPxxxE T
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If we define a Lyapunov function 
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di = , then if the following 

condition )()(),( twtwtxV
dt

d T

di ≤  holds for all x  

satisfying (2.1), then the following inequality holds 

1≤PxxT
, or in other words xue ER ⊂ .  

Theorem 2.1 If the following LMI in P  holds  
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then  ueRx ∈∀  we have  

1−≤ PxxT
.                                               (2.5) 

If we denote by T  the transfer function from w  to 

z  we can define the following induced norm: 
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where z  is  a measure of the amplitude of the 

vector z  and it can be for example the ∞  norm or 

the second norm. If we consider the second norm for 

the amplitude of z , we get  
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and after applying the Schur complement we have 
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If we consider 0=D  for the system described in 

(2.1) (a common assumption in the 2H  control) then 

we get 
TTT CtxtCxtztz )()()()( =  and from the 

Theorem 2.1 it results that if there is a symmetric and 

positive definite matrix P  such that the LMI (2.4) is 

satisfied the right inequality in (2.8) holds if and only 

if    

p

T ICCP β≤−1
 .                                        (2.9) 

Theorem 2.2 If A is exponentially stable and 0=D , 

the inequality β≤
2

T  holds if and only if there 

exists a matrix symmetric and positive definite P  

such that  
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and  

p

T ICCP β≤−1
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We can consider == ))()(sup( :
2
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)(trace 1 TCCP −=  as being the classical 2H  

norm of the system. 

The Theorem 2.2 is still valid for the 2H  norm if we 

replace the inequality (2.11) with 

β≤− )(trace 1 TCCP . The two conditions are 

actually equivalent since we already proved that 

p

TT Izzzz   ββ ≤⇔≤  and )z (trace TzzzT = . 



This is the reason why we will consider the condition 

(2.11) for further investigations in the case of TDS. 

The Theorem 2.2 gives us an upper bound on the 2H  

norm in the case of the delay free systems. Let us 

consider now the case of a TDS described by the 

following set of equations: 
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where, 
nx R∈  is the state vector,  

mw R∈  is the 

input and 
pz R∈  is the output.  

We will consider instead of the Lyapunov function 

PxxxV T

di =)(  the following Lyapunov functional 
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where LiPP i :1,, =  are symmetric and positive 

definite weight matrices. This is a classical choice for 

the functional in the delay independent case see for 

example (Park and Won, 2000) or (Boyd et al., 

1994).  

We will also define the set of reachable states with 

unit energy inputs as  
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Due to the integral terms in the (2.13) the ellipsoid 

defined by { }1  ≤= PxxxE T
 will be a less tight 

approximation of the reachable set TDSueR _  

compared with the delay free case. The bounding 

condition will be in this case: 
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 Lemma 1 Given a set of vectors 
n

L Ruuu ∈,,, 21 K  where 1>L , the 

following inequality holds: 
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If we apply the Lemma 1 in (2.15) we get: 
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If )()(),( twtwtxV
dt

d T≤ , )(),( twtx∀  satisfying 

(2.12) it results that 1)()( ≤tPxtxT
, 0>∀t . 

By applying the Schur comlemnet this inequality is 

equivalent with 
1)()( −≤ Ptxtx T
, 0>∀t . As a 

result we have: 
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From (2.15) and (2.18) we get the following 

implication: 
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Theorem 2.3 If the for system described by (2.12) we 

have 0=D  and there is a set of matrices symmetric 

and positive definite P  and LiPi :1, =  such that 

the following LMI’s are satisfied:  
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then the system is exponentially stable and  

β≤
2

2
T . 

 

3. THE 2H  SYNTHESIS PROBLEM 

 

Let us consider the following control configuration: 

 

 

 

 

 

 

 

 

 

 

               Fig.1 (the closed loop system) 

 

where 
nx R∈  is the state vector, 

1mw R∈  is the 

exogenous input, 
2mu R∈  is the control input, 

1pz R∈  is the performance output and 
2py R∈  is 

the measured output.  

We will see the channel from w  to z  as being the 
performance channel. The closed loop system will be 

described by the following system of equations:  
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and  
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The closed loop system will be described by the 

following system of equations: 
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where Li :1 = .                                    (3.4) 

The quality output has to be seen as a conventional 

cost. As we can see from the formulation of the 2H  

problem, we are not interested in the direct transfer 

from w , the exogenous input, to the performance 

output (see the condition 0=D  in the Theorem 

2.2). The quality output will be defined only in terms 

depending on current or delayed states of the system, 

and as a result it will have the following structure 

),()()()( _11_ LLclclcl tECtECtCtz τξτξξ −++−+= K

                                                                          (3.5) 

which simply ignores the 
clD  term.  

Theorem 3.1 If there is a set of symmetric positive 

definite matrices 
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then β≤
2

2wzT , where norm wzT  is the induced 

norm of the performance channel defined in (2.7). 
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Since we have proven in the previous chapter that 
pRz ∈∀ , we have that 

ββ ≤⇔≤ )(trace  T

p

T zzIzz  we will try to 

solve the 2H  problem as presented in the Theorem 

3.1.  

 

4. CONTROLLER SYNTHESIS AND 

NUMERICAL RESULTS 

 
Due to the availability of some Semidefinite 

Programming Toolboxes the main target of this 

chapter is to formalize the optimization objectives in 

terms of some SDP and then to create an 

optimization procedure that would compute the 

optimal 2H  controller. An SDP problem is in 

practical terms a set of LMI restrictions together with 

a linear optimization objective and in it’s dual form 

can be represented as: 
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where ŷ  is the vector of the unknown scalar 

variables kŷ  and Ĉ , kÂ  are symmetric matrices of 

same size. There are several Toolboxes available 

with Matlab on the internet, most of them for free. 

For the use of this research we used the SDPT3.2 

developed by Toh, Todd and Tutuncu and for more 

details see (Toh, 1998).   

In order to solve the mixed problem we will bring 

first the inequalities present in Theorem 3.1 in an 

equivalent form, by separating the controller matrices 

from the rest.   
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(4.2) and (4.3)  
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The first inequality in the Theorem 3.1 will be 

equivalent with 

0<ΛΠΘ+ΘΛΠ+Σ TTT KK                  (4.5) 

where Σ , Λ , Π  and Θ  are defined as:  
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In a similar way the second inequality in the Theorem 

3.1 can be rewritten as 
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where we denote by ):!,:1( nnP  the upper left nn×  

block of the P  matrix.   
                                                                      (4.10) 

Since in (4.5) the inequality is not linear in both the 

weight matrix P  and the controller K  we cannot 

optimize with respect of both of them in the same 

time and we need an iterative procedure. Before 

being able to start this iterative process however we 

need to compute an initial feasible value for the P  

matrix. In order to do so we can consider the 

following inequality 

,01)1( <−ΛΠΘ+ΘΛΠ+Σ +++ mknL

TTT IKK λ  

                                                                      (4.11) 

and then alternately optimize with respect P  and K  

till λ  becomes smaller or equal than 0. This step 
could be seen as a test of checking if we can find a 

stabilizing controller. The idea is that we can choose 

a  K  arbitrarily, then the computed value of P  at 
the first step can be use to the next step when we 

optimize in terms of K  and then use the new 

computed value of K  for the optimization of P . 

We could repeat then till 0<λ  or no progress 

anymore. Since both problems are convex ( )min(λ  

where either P  or K  are variable in (4.11)), a 

smaller or equal value of λ  will result for each step, 
which ensures the convergence. The resulting values 

of P , LPP ,,1 K  and K  could be seen as a good 

starting point for the 2H  optimization problem. 

 

5. CONCLUSIONS 

 
The present approach offers, for the first time to our 

knowledge, the possibility to formalize the 2H  

control objectives for TDS in terms of two LMI’s. 

The conditions are constructed from the initial 

requirements and several alternative objectives are 

analyzed and related to each other. A methodology 

for the computation of the feedback controller is also 

presented together with a two stages alternating 

optimization procedure. An example is presented in 

the end. One new feature of the optimization 

procedure is the solution chosen for the computation 

of the a feasible set of the weight matrices present in 

the Lypunov functionals, which doesn’t make use of 

the Projection Lemma us done in similar situations in 

the past (see for example [7,8,11]). A numerical 

example is presented in the end. The procedure is 

related to the family of the Lyapunov based 

approaches and it offers the mainframe for future 

extensions. The mixed problem ∞HH /2  will be 

presented in a future paper.  
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