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Abstract: This paper presents an approach on the bond graph modeling applied to 
mechanical oscillating systems, Quanser flexible link, followed by the simulation of the 
resulted mathematical model. The system was decomposed into smaller parts – 
subsystems – that were modeled separately. The obtained subsystems generated 
submodels and the overall model was then built up by combining these separate 
structures. The linear model was obtained by modifying the flexible link displacement 
factor. We compared the results of linear and nonlinear models simulation to identify the 
nonlinear factor influence upon the output parameters evolution. 
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1. INTRODUCTION 

 
The study of system dynamics resides in modeling its 
behavior. Systems models are simplified, abstracted 
structures used to predict the behavior of the studied 
systems. Our interest is pointing towards the 
mathematical model used to predict certain aspects of 
the system response to the inputs. In mathematical 
notations a system model is described by a set of 
ordinary differential equations in terms of state 
variables and a set of algebraic equations that relate 
the state variable to other system variables.    
In order to model a system it is usually necessary to 
decompose the system into smaller parts – 
subsystems - that can be modeled separately. The 
subsystem is a part of the system that can be modeled 
as a system itself obtaining submodels. The overall 
model can then be built up by combining the separate 
submodels.  
System models will be constructed using a uniform 
notation for all types of physical systems which is 
bond graph method based on energy and information 
flow (Karnopp D., 1975). The method uses the effort-
flow analogy to describe physical processes. A bond 
graph consists of subsystems linked together by lines 
representing power bonds. Each process is described 
by a pair of variables, effort (e) and flow (f), and their 
product is the power. The direction of power is 

depicted by a half arrow. In a dynamic system the 
effort and the flow variables, and hence the power 
fluctuate in time. Using the bond graph approach it is 
possible to develop models of electrical, mechanical, 
magnetic, hydraulic, pneumatic, thermal, and other 
systems using a small set of variables.  
It is remarkable how models of various systems 
belonging to different engineering domains can be 
express using a set of only nine elements, called 
elementary components. These elements are 
sufficient to describe any physical system regardless 
of the energy types processed by it.  
A classification of bond graph elements can be made 
up by the number of ports. The ports are places 
where interactions with other processes take place. 
There are one port elements represented by inertial 
elements (I), capacitive elements (C), resistive 
elements (R), effort sources (SE) and flow sources 
(SF), two ports elements represented by transformer 
elements (TF) and gyrator elements (GY), and multi 
ports elements - effort junctions (J0) and flow 
junctions (J1).  
Two other types of variables are very important in 
describing dynamic systems and these variables, 
sometimes called energy variables, are the 
generalized momentum (p) as time integral of effort 
and the generalized displacement (q) as time integral 
of flow.  



Depending on the complexity of systems it is a good 
idea to use a systematic way of building the model in 
small steps (Thoma J., 1990).  
A first step is to write a word bond graph which 
contains words instead of standard symbols for the 
main components and bonds for power and signal 
exchange. The component name is useful, but it is 
more important the connection of the components to 
other components through ports.  
There are two types of ports, power ports 
characterized by power flow into or out of the 
component, graphically represented by a half arrow, 
and control ports characterized by negligible power 
flow and high information content, depicted by a full 
arrow.  
The next step is to replace words by standards 
elements which contain precise mathematical or 
functional relations. Each element represents a 
definite effect or action in the system. When the bond 
graph model is done it is possible to formulate the 
state space equations starting from the constitutive 
relations of elements. 
 
 

2. QUANSER FLEXIBLE LINK SYSTEM  
 

The SRV02 rotary plant module serves as the base 
component for the rotary family of experiments. Its 
modularity facilitates the change from one 
experimental setup to another. The SRV02 plant 
consists of a DC motor in a solid aluminum frame 
equipped with a gearbox whose output drives 
external gears. The basic unit is equipped with a 
potentiometer to measure the output/load angular 
position. 
 

 
 

Fig. 1. SRV02 plant – DC motor and gear box 
 
The external gear can be reconfigured in two 
configurations: 
- Low Gear Ratio - this is the recommended 
configuration to perform the position and speed 
control experiments with no other module attached to 
the output.  
The only loads that are recommended for this 
configuration are the bar and circular loads supplied 
with the system;  

- High Gear Ratio - this is the recommended 
configuration for all other experiments that require an 
additional module such as the flexible beam, ball and 
beam, gyro, rotary inverted pendulum etc. 
 

 
Fig. 2. High gear configuration 
 
The Rotary Flexible Link module is designed as an 
attachment to the SRV02 plant. The module consists 
of a thin stainless steel link instrumented with a strain 
gage. The arm deflection is measured via the strain 
gage output. The model is designed to accentuate the 
effects of flexible links in robot control systems. 
 

 
Fig. 3. Quanser Flexible Link system 
 
 

3. BOND GRAPH MODEL OF THE SYSTEM  
 

We proceed to the development of the model by 
identifying the system components and connecting 
them as they are in the real system (Damic V., 2002). 
 

Fig. 4. Block diagram representation of the system 
 

The bond graph model of DC Motor component is 
presented in the figure below: 
 

Fig. 5. Bond graph model of DC motor component 



The gyrator GY describes the electromechanical 
conversion in the motor relating the back emf from 
the electrical part to the angular velocity of the rotor 
from the mechanical part, respectively the armature 
current from the electrical part to the torque acting on 
the rotor. For this reason, the gyrators are called 
overcrossed transformers.  
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where: tk  is the motor torque constant; 

            mk  is the back emf constant. 
The electrical process in the armature is described in 
bond graph terms by the armature resistance mR  
represented using a resistive element (R), and the 
armature inductance mL  represented using an inertial 
element (I). These two elements are joined through 
an effort junction (1 junction). The mechanical 
process is also described using an inertial element 
that models the rotation of the rotor mass moment of 
inertia mJ , and a resistive element that models the 

linear friction coefficient mB . These two elements 
are joined through an effort junction (1 junction). 
The gearbox named Gear is represented by a 
transformer (TF) having its parameter equal to the 
reduction ratio of the gearbox, an inertial element, 
representing the equivalent high gear inertia hgJ  and 
a resistive element to model the viscous friction 
forces.    
 

 
Fig. 6. The bond graph model of Gear component 
 
In order to model the component Flexible it is 
necessary to write the equations of motion of the 
rotary flexible link which involves the modeling of 
gear and flexible link as rigid bodies. The link is 
modeled as a rod rotating about its endpoint and it 
has the moment of inertia: 
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where lm  is the mass of flexible link and L  is the  
 

length of flexible link. 
The relation between the natural frequency of the 
system, moment of inertia and stiffness coefficient is 
given by 
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with nn fπω 2= , where the natural frequency nf  is 
experimentally computed and stiffk  is the equivalent 
torsion spring constant.  
For this system we have neglected the friction effects 
between the rotational gear and flexible link.  
Figure 7 depicts the flexible link in motion  
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Fig. 7. Schematic of flexible link module 
 
This figure shows the relation between the angular 
position α  and the displacement of the flexible link 
d , respectively the relation between the angular 
velocity and the velocity of flexible link. 
 
                            )sin(αLd =                           (4) 

                           αα && )cos(Ld =                     (5) 
 

Using the relations presented above, the bond graph 
model of flexible link has the following form: 
 

 
Fig. 8. The bond graph model of Flexible link 

component 
 
The angular velocity with respect to rotational gear 
and the velocity of flexible link were introduced by 
two effort junctions related by a MTF element with 
the transformer modulus equal to )cos(αL . The 
capacitive element is used to model the torsion 
stiffness (Fossard A. J., 1993). 



 

 
Fig. 9. The complete Bond Graph model of the system 

 
 
By joining together these three models, we obtained 
the complete bond graph model of the Quanser 
flexible link system.  
Gawthrop and Bevan (2007) presented a model of 
this system resuming to a simplified bond graph 
representation. 
Before writing the constitutive equations it is 
desirable to name all the bonds in the graph, to assign 
to each bond a reference power direction and to 
assign causality to each bond. The study of causality 
is an important feature of bond graph method and it 
is specified by means of the causal stroke. The causal 
stroke is a short, perpendicular line made at one of 
the bond line ends indicating the direction in which 
the effort signal is directed.  
It can be easily seen that we have four elements in 
integral causality which means that we have four 
state variables in terms of generalized momentums 
and generalized displacements ( )1513102 ,,, pqpp . 
The constitutive equations of I and C elements in 
integral causality are given by the following 
relations: 
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For the inertial elements in derivative causality and R 
elements, the constitutive equations are as follows: 
 
              33 fRe m= , 77 fBe m= , 1111 fBe hg=         (8) 
                      66 fJp m= , 1515 fmp l=                     (9) 

 
The effort junctions (J1) and the flow junctions (J0) 
are characterized by, the flows on all bonds equal to 
zero and the algebraic sum of the efforts equal to 
zero, respectively the efforts on all bonds equal to 
zero and the algebraic sum of the flows equal to zero. 
For the TF and GY elements we have the following 
relations: 
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There is one more transformer element, a modulated 
or controlled transformer, denoted MTF. This 
component satisfies the power conservation 
requirement. This is satisfied not only by the 
transformer modulus, but also by the ratios 
dependent on a control variable. In our case the 
modulated transformer modulus depends on the 
relative angular velocity of the flexible link. Thus, 
the modulated transformer is described by the 
following constitutive relations:  
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Combining all these equations and using the 
following notations 
 

           mhge JJnJ += 2 , mhge RRnR += 2       (12) 
                        lleb JmkJ += 2

1                    (13) 
                          )cos(1 αLk =                      (14)   

 
we arrive at the state space equations in terms of 
energy variables p and q. 
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Deriving the constitutive equations of I and C 
elements we will obtain the state space equations in 
terms of power variables. Taking into account the 
physical significance of the effort e and flow f:  
 
                  aif =2 , ω=10f , lf ω=18                  (16)       
                                   τ=13e                                 (17) 

 
we arrive at the final form of state space equations: 
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Where: ai  - the armature current, au  - the armature 
voltage, ω - angular velocity of gear shaft, τ - the 
torque action on the rotor, lω - angular velocity of 
the flexible link.  
 
 

4. SIMULATION RESULTS 
 

For the simulation the following values were used: 
ua=2V motor input voltage, Rm=2.6 Ω  armature 
resistance, HeLm 318.0 −=  armature inductance, 

mNkt ⋅= 00767.0  motor torque constant, 
2787.3 mKgeJ m ⋅−=  motor inertia, 

232 mKgeJ hg ⋅−=  equivalent high gear inertia, 
)//(34 srdNmeBhg −=  viscous damping 

coefficient, mL 45.0=  the flexible link length, 
Kgml 08.0=  flexible link mass; Hzfc 2.3=  natural 

frequency; 
Figures 10 – 14 represent the variations of main 
model parameters.  
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Fig. 10. The current variation in the DC motor 
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Fig. 11. The gear shaft angular velocity as time 

function 
 
In the diagrams the continuous line was used to 
present the results of linear system model. With 
dashed lines were represented the results of nonlinear 
system model. The nonlinearity is introduced by the 
angular factor )sin(α  in the free end of flexible link 
displacement (eq. 4). 
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Fig. 12. The shaft torque variation  
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Fig. 13. The angular velocity of the flexible link 

deflection 
 
Previous works on oscillating mechanical units such 
as the flexible beam, ball and beam, gyro, rotary 
inverted pendulum etc. carried out (Ionete C., 2003) 
showed similar evolutions of the system behavior. 
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Fig. 14. The impulse response of the flexible link 
 
Based on parameters evolution in the diagrams above 
we notice a slight difference between linear and 
nonlinear response. The settling time is almost the 
same for both systems even if the amplitude for 
nonlinear model is higher. The influence of system 
nonlinearity is more visible in the variation of 
angular velocity of the flexible link deflection due to 
angular factor existent in its mathematical 
expression. 

 
 

5. CONCLUDING REMARKS 
 

In this work our interest was pointed towards the 
mathematical model used to predict certain aspects of 
the system response to the inputs. 
The system model was constructed using a uniform 
notation for all types of physical systems, the bond 
graph method based on energy and information flow. 
Using this method, models of various systems 
belonging to different engineering domains can be 
express using a set of only nine elements.  
First we wrote a word bond graph containing words 
instead of standard symbols for the main components 
and bonds for power and signal exchange. The next 
step was to replace words by standards elements that 
contain precise mathematical or functional relations. 
The system was decomposed into three subsystems 
that were modeled separately.  By joining together 

these three models, we obtained the complete bond 
graph model of the Quanser flexible link system. 
The model was simulated in the MatLab environment 
the results showing differences between linear and 
nonlinear systems in terms of amplitude for the 
output parameters due to angular factor existent in 
the mathematical expression of the last one. Despite 
these differences the settling time is almost the same 
for both systems. 
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