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Abstract: This paper presents some network models in connection to basic qualita-
tive dichotomies: stability/instability and synchronization/chaos. Another dichotomy
deals with interconnections which may be delayed or diffusive. A special model leading
to time delay partial differential equations is presented.
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1. INTRODUCTION. MODELS AND
PROBLEMS

A. Speaking or writing about networks, regard-
less their physical nature, means representation
of some “devices” or sub-systems subject to some
interconnections of definite type resulting in a sys-
tem with new properties. The systemic approach
to such structures means that each sub-system
is viewed as some processor of the input signals
which are transformed in output signals sent to
other sub-systems. If we forget the purely physical
aspects then system’s evolution in time becomes
an information processing.

Among the simplest dynamical systems we have
to mention those with a single globally asymptot-
ically stable attractor: this attractor may be an
equilibrium or a periodic motion (maybe almost
periodic). The next class of systems from the
complexity point of view is that of the systems
with several asymptotically stable attractors. The
best known are here the neural networks: their
capacity as devices of the Natural/Artificial Intel-
ligence is in direct connection with the number of
the attractors. This systems classification allows
emphasizing some dichotomic types of qualitative
behavior: stability/instability and synchroniza-
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tion/chaotic behavior. This behavior is related to
interconnections: they may send the system to the
stable equilibrium or “push” it to instability. Also
they may send to order and synchronous behavior
of sub-systems’ motions or, in the opposite case,
to complex, chaotic evolutions.

Since the Liapunov stability is well understood,
including systems with several equilibria - see
Gelig et al (1978), Leonov et al (1992), Halanay
and Răsvan (1993), we shall deal with the second
dichotomy, especially with synchronization.

B. Synchronization means that the interconnec-
tions have as direct consequence some regularity
of the sub-systems’ behavior. The most obvious
one is the complete synchronization of the motion
implying the periodicity of all state variables of
the system. Such type of behavior is quite known
- synchronization of the mechanical vibrators, of
the electrical machinery, even of the biological
processes where synchronization is viewed as a
mechanism of self-organization.

The mathematical model of the synchronization
in the state space is the existence of an invariant
toric manifold composed of quasi-periodic mo-
tions. The synchronisms are classified according to
their degree. The highest synchronization degree
corresponds to a synchronous motion of all sub-
systems, with the same period; this corresponds
to a toric manifold of minimal dimension (=1) i.e.



to a periodic motion. The lowest synchronization
degree corresponds to the independent periodic
motions of all sub-systems, each with its own
period; this corresponds to a maximal dimension
of the toric manifold.

C. The best known synchronization models are
the phase synchronization. It is interesting to
remark a certain similarity of all these models.
For instance, the paradigm-model of Kuramoto -
see Kuramoto (1975), Kuramoto (1984) - with the
form

θ̇i = ωi +
K

N

N∑
1

sin (θj − θi) + ξi(t),

i = 1, . . . , N

(1)

where θi is the oscillator’s phase, ωi - its natural
frequency and ξi(t) - a perturbation accounting
for the uncertainty, is very similar to the model of
R. Adler - the inventer of the remote control - see
Adler (1946), Acebrón and Spigler (2007)

α̇ = ω0 − ω1 − E1

E

ω0

2Q
sin α (2)

This models concerns a single oscillator, where
(ω1, E1) are the electrical parameters of the ex-
ternal signal, ω0 - the current frequency and α -
the phase of the oscillator.

The model of the oscillator in the micro-wave
networks is of the same type (Adler)

θ̇ = ω0 +
ω0

2Q

Ai(t)
A(t)

sin (θi(t)− θ) (3)

with (Ai(t), θi(t)) - the amplitude and the phase of
the external signal; the frequency is here constant.
If we consider now N Adler oscillators that are
synchronized to the frequency of the first one, the
following model is obtained

θ̇i = ωi − ω1

2Q

N∑

j=1

εij
αj

α
sin (ψij + θi − θj)(4)

with ψij - “added” phases; the model is very
similar to that of Kuramoto. In these models the
types of connections among individual oscillators
are not specified: usually these are connections
to some “neighbors” - the “closest” - and these
couplings are represented by εij .

It is interesting to consider another comparison
: the models of Adler and Kuramoto versus the
electromechanical model of n+1 synchronous ma-
chines of power system analysis - see e.g. Vayman
(1981)

θ̇i = ωi

Hiω̇i = Pmi −
n+1∑

j 6=i

EiEjYij sin (θi − θj)−

−D(ωi) , i = 1, . . . , n + 1

(5)

This model contains also a dynamics of the fre-
quencies but the couplings are as in the model
of Adler and Kuramoto. Besides this the model
(5) can represent also the pendula coupled by
springs having sinusoidal characteristics Starjin-
skii (1985).

A simplified model of p.c.m. telephone networks
reads Parks and Miller (1970)

φ̇ij = f0j − f0i −
∑

l 6=i,j

[kjlf(φjl)− kilf(φil)]

i, j = 1, . . . , n
(6)

where

f(σ) = σ + [1/2− σ]e

is a N -periodic function, [. . .]e being as usual the
entire part of a number. This model is also of
Adler type.

2. INTERCONNECTIONS AND DELAYS

A. An assumption that is supposed to make the
network models more realistic is signal delay along
the connection lines. A first possibility is the
introduction of a “uniform” delay - the same for
all interconnection lines - in the Kuramoto model
with a unique frequency of all oscillators, see the
paper of Earl and Strogatz (2003)

θ̇i = ω +
K

k

N∑
1

aijf(θj(t− τ)− θi(t)) (7)

where each oscillator receives k signals and aij

account for the presence or absence of some con-
nection: aij = 1 shows that the oscillator j sends
a synchronization signal to the oscillator i; in the
opposite case aij = 0; also

∑
j aij = k, ∀i.

A more complicated model supposes separate de-
lays in the classical Kuramoto model, see Pa-
pachristodoulou and Jadbabaie (2005)

θ̇i = ωi+

+
K

N

N∑
1

Aij sin (θj(t− τij)− θi(t))
(8)

The telephone network model of Parks and Miller
(1970) also contains delays over the transmission
lines



φ̇ij = f0j − f0i−

−
∑

l 6=i,j

[kjlf(φjl(t− dij))− kilf(φil(t))] ,

i, j = 1, . . . , n

(9)

In the modelling of the networks of biological
oscillators the following model is considered Fox
et al (2001)

ẋi = 3xi − x3
i − yi + Si

ẏi = ε(f(xi)− yi)
(10)

Si =
∑

k

wikS∞(xk(t− τ))

S∞(x)≡
(
1− e−α(x−θ)

)−1

where θ is the threshold of the connecting signals.

B. A more interesting electrical model, where the
delay arises from local propagation (it is present
in each oscillator model) is that of Wu and Xia
(1997)

Ls
∂ik
∂t

= −∂vk

∂x
, Cs

∂vk

∂t
= −∂ik

∂x
,

0 ≤ x ≤ 1

E = vk(0, t) + R0ik(0, t)

−C
d

dt
vk(1, t) = −ik(1, t)+

+g(vk(1, t))−

− 1
R

[vk+1 − 2vk + vk−1](1, t),

k = 1, . . . , N

(11)

We have here N oscillators with tunnel diode and
local transmission line - see Brayton and Mi-
ranker (1964) - coupled in ring; the “periodicity”
of this connection arises from vN ≡ v0. The delays
result from the propagation along the local lossless
transmission lines; at the same time the structure
of the couplings suggests some discretization of a
second derivative. Starting from this remark J.K.
Hale introduced a distributed model - see Hale
(2004)

Ls
∂i

∂t
(x, y, t) =

∂v

∂x
(x, y, t) ,

Cs
∂v

∂t
(x, y, t) = − ∂i

∂x
(x, y, t) , 0 ≤ x ≤ 1

E = v(0, y, t) + R0i(0, y, t)

−C
∂v

∂t
= −i(1, y, t) + g(v(1, y, t))−

− 1
R1

∂2v

∂y2
(1, y, t) , y ∈ S1

(12)

S1 being the circle of radius 1. This kind of
coupling, diffusive in the sense of the partial
differential equations, may be also recognized in
other types of networks.

3. DIFFUSIVE COUPLINGS AND CONTROL
SIGNALS

Several papers dealing with complex dynamics
- Pogromsky (1998); Pogromsky et al (1999);
Pogromsky and Nijmeijer (2001) - consider the
networked systems from the point of view of
the interconnections resulting from control signal
synthesis. A sufficiently simple model reads as
follows

ẋi = f(xi) + Bui

(13)
yi = Cxi , i = 1, . . . , n

where the control signals ui are defined by the
simplest structure of a linear output feedback

ui = −
∑

j 6=i

γij(yi − yj) (14)

This feedback may be viewed as defining a sym-
metric interconnection matrix with nonnegative
entries

γij = γji ≥ 0 ,
∑

j

γij > 0 (15)

If a general definition of the synchronization is
used - see Blekhman et al (1997) - the signal
synthesis of (14) may be done by the minimization
of some functional as

Q(x1, . . . , xn, t) =
∑

i,j

|xi(t)− xj(t)| (16)

This is in fact the approach “control-synthesis-
feedback” of the networks; the diffusive intercon-
nections (14) may be computed in order to ob-
tain various qualitative behavior of the systems
according to synthesis results.

4. SOME CONSIDERATIONS ON
OSCILLATORS THAT ARE COUPLED IN

RING

We shall consider here the model (11). Its main
features are a consequence of the identity of the N
oscillators: the same transmission line parameters,
the same parameters of the circuit at the two
boundaries of the local lines, consequently, the
same nonlinear function (the same tunnel diode,
the dispersion of the electronic parameters being
thus neglected) and a common source E(t).



We shall apply to this system the method of
e.g. Răsvan (1975) by introducing first the Rie-
mann invariants, also called forward and back-
wards waves, for each local oscillator separately

vk(x, t) = u1
k(x, t) + u2

k(x, t)

ik(x, t) =
√

Cs

Ls

(
u1

k(x, t)− u2
k(x, t)

) (17)

to obtain the transformed system

∂u1
k

∂t
+

1√
LsCs

∂u1
k

∂x
= 0

∂u2
k

∂t
− 1√

LsCs

∂u2
k

∂x
= 0

(
1 + R0

√
Cs

Ls

)
u1

k(0, t)+

+

(
1−R0

√
Cs

Ls

)
u2

k(0, t) = E(t)

RC
dVk

dt
= −Rg(Vk)−

−R

√
Cs

Ls

(
u1

k(x, t)− u2
k(x, t)

)
+

+Vk+1 − 2Vk + Vk−1

u1
k(1, t) + u2

k(1, t) = Vk(t)

(18)

Integrating along the characteristics, as in (op.
cit.), we obtain a standard system of coupled delay
differential and difference equations as follows

T
dwk

dt
= −f(wk) + (1− ρ0)η2

k(t− τ)+

+e(t) + wk+1 − 2wk + wk−1

η1
k(t) = −ρ0η

2
k(t− τ) + e(t)

η2
k(t) = −η1

k(t− τ) + δ0wk,

k = 1, . . . , N, w0 ≡ wN

(19)

where the following notations have been made

T = RC , τ =
√

LsCs ,

f(σ) =
√

Ls

Cs
g(δ0σ) , δ0 = R

√
Ls

Cs

ρo =
1−R0

√
Ls

Cs

1 + R0

√
Ls

Cs

, e(t) =
E(t)

1 + R0

√
Ls

Cs

For this system we may formulate several mathe-
matical problems

1o Stability i.e. non-oscillation of each local os-
cillator under constant input signal e0.

2o Almost linear behavior of each local oscillator
for periodic or almost periodic e(t).

3o Synchronization of the oscillator network i.e.
finding conditions for a periodic solution of
the overall oscillator network: since there is
a unique input periodic signal e(t), all state
variables should be periodic with the same
period - highest synchronization degree, see
Section 1.

4o The Turing-Smale problem: under the con-
stant input signal e0, with each local oscil-
lator “dead” (i.e. with a globally asymptoti-
cally stable equilibrium), find conditions for
the interconnections in order to obtain an
oscillating (“alive”) network.

Worth mentioning that while some of the prob-
lems are more or less solved, other ones e.g. the
third and the fourth (the Turing Smale problem)
are still open for various classes of oscillating sys-
tems.
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