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Abstract: This paper presents some aspects concerning the estimation of the parameters in 
the input-output chlorine residuals models of drinking water distribution networks 
(DWDNs) used for transportation of treated drinkable water from the water treating 
plants to consumers. To kill the microorganisms that can cause the waterborne ills, 
disinfection is usually the final treatment stage in the drinking water plants. Usually, the 
disinfectant used in DWDNs is chlorine because it is inexpensive and effectively 
annihilates a variety of disease-causing organisms. To maintain high-quality drinkable 
water in such distribution networks it is necessary to regulate the chlorine residual 
concentration within a prescribed set of bounds. Since the DWDNs are large scale 
systems with high uncertainties and time varying delays, in order to obtain useful models 
for control, in this paper, some aspects regarding the estimation of parameters of the 
input-output chlorine residuals models are analysed. The model parameters are time 
varying and heavily dependent on the hydraulics which is a main source of uncertainties 
in chlorine concentration models. Using the input/output data and a priori knowledge of 
the system, in this paper will be presented a method for the estimation of bounding values 
corresponding to model parameters so that the obtained model could be used in a robust 
predictive control method.   
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1. INTRODUCTION 
 
Drinking water distribution networks (DWDNs) are 
complex, large-scale systems composed of storage 
tanks, pumps, valves and pipes that are connected 
together to supply clean water to industrial and 
domestic users. 

Usually, drinking water is take from ground sources 
(rivers, lakes), or underground sources (wells, 
springs). To reduce the risk of human exposure to 
pathogens, drinking water is treated in the water 
treating plants to filter out unwanted substances using 
physical and chemical methods thereby making it 
safe, clean and healthy for consume. To kill the 
microorganisms that can cause some waterborne ills, 
disinfection is usually the final treatment stage in the 
drinking water plants. Ussualy, the disinfectant used 
in DWDNs is chlorine because it is inexpensive and 
effectively annihilates a variety of disease-causing 

organisms (Brdys et al., 2001; Brdys and Chang, 
2002a; LeChevallier and Kwok-Keung, 2004). But 
disinfectant concentration in the water may decay 
during the transportation, and bacteria growth cannot 
be controlled if disinfectant concentration is lower 
than a certain level. As a result, the bacteria and 
waterborne pathogens may grow. Microorganisms 
can also grow up on the pipe and tank walls as not all 
microorganisms are killed in the water treatment 
plants. The surviving bacteria can grow to harmful 
levels without further disinfection during water 
transportation in the DWDNs. Although the 
magnitude of the waterborne diseases has reduced 
significantly when the chlorine to treat drinking 
water does not decrease under a minimum level, at 
the same time during the water treatment process, 
chlorine (especially at large level) can react with 
organic compounds present in the bulk water or pipe 
walls to form Disinfection By-Products, some of 



which are suspected carcinogens (LeChevallier and 
Kwok-Keung, 2004; Polycarpou et al., 2002). This 
leads to a limitation on the chlorine dosage in 
DWDNs and stricter monitoring of the chlorine 
residual concentration in the water network. For 
instance, the U.S. EPA (Environmental Protection 
Agency of United States) established that the 
minimum chlorine residual that must be present at 
points of water consumption is 0.2 mg/l 
(LeChevallier and Kwok-Keung, 2004; Polycarpou et 
al., 2002), while the maximum residual chlorine in 
the DWDN is 4 mg/l. As a consequence, distribution 
network water quality control is an important 
problem, and the regulation of chlorine residual 
concentration within a prescribed set of bounds is 
part of the solution. At the same time, the accurate 
and reliable control of chlorine residuals within a 
DWDN is a new and complex problem (Chang and 
Brdys, 2003; Chang, 2003, Polycarpou et al., 2002). 

In fact, in the control problem of DWDNs, besides 
the quality control one major aspect is the quantity 
control. The quantity control deals with water flows 
and pressures producing pump and valve schedules. 
The purpose of quantity control is to satisfy the time-
varying water demands, maintain a stable prescribed 
water pressure throughout the network and minimize 
the operating costs (Chang, 2003). Since in the 
DWDNs the chlorine is carried by water, the 
characteristics of the chlorine transportation and 
mixing are determined directly by the water flows, 
velocities and detention times in the reservoirs. 
Hence, the hydraulics has significant effect on the 
chlorine concentration, while the chlorine injection’s 
effect on the hydraulics can be neglected because the 
chlorine mass added is negligible compared to the 
mass of the water (Brdys and Chang, 2002a). At the 
same time, the hydraulics is a main source of 
uncertainties in chlorine concentration model. Such 
uncertainties are determined by many factors in the 
system, such as water demand prediction, hydraulic 
time step, pump characteristic curve, physical 
coefficients of the pipes and storage facilities, etc. 
Another source of uncertainty is associated with the 
chlorine decay caused by chlorine reactions.   

For water quality control, an important problem that 
must to be solved is the modelling of chlorine 
residual dynamics in DWDNs. It is necessary that the 
obtained models to be convenient for controller 
design and at the same time suitable for handling the 
transport delay, which is inherently associated with 
the time-varying delivery of water. Note that in 
(Petre and Selisteanu, 2007b), the input-output 
relationship between chlorine concentrations at an 
injection node (input) and at a monitored node 
(output) was modeled as a linear discrete-time system 
with time-varying parameters. The model was 
developed beginning with the case of one single pipe 
following with a water network with any number of 
pipes connected in series or in parallel and finally 
with a complex water network with storage facilities. 
This model was formulated in discrete-time as an 
ARMA (auto-regressive moving average) model with 

time-varying coefficients (heavily depending on the 
hydraulics). The discrete-time formulation is suitable 
both for handling the transport delay, and control.  

The model parameters are associated with the time 
delays of chlorine transportation in the water flow 
paths. Since in a DWDN the calculating the time 
delays is complicated not only due to this topology, 
but also because consumer water use rates are 
varying and unknown, result in inaccurate parameters 
of the obtained model. At the same time uncertainties 
in the hydraulic information finally appear also in the 
chlorine residual model through the detention time 
and mixing ratio. Then, in order to complete the 
model design presented in (Petre and Selisteanu, 
2007b), its parameters must be estimated. Since 
operational control of a DWDN is based on the 
prediction methods, in this paper, some aspects 
concerning the estimation of the parameters of this 
model are presented and analysed. Using the 
input/output data and a priori knowledge of the 
system, in this paper will be presented a method for 
the estimation of the bounding values corresponding 
to model parameters so that the obtained model is the 
least conservative uncertainty model and could be 
used in a robust predictive control method.  

The rest of this paper is organized as follows. An 
input-output explicit model of chlorine residuals in 
DWDNs are presented in Section 2. Section 3 
describes a method for the estimation of the 
bounding values corresponding to model parameters 
so that the obtained model can be used in a robust 
predictive control method. Concluding remarks in 
Section 4 complete this paper. 
 

2. THE INPUT-OUTPUT MODEL OF 
CHLORINE RESIDUALS IN DWDNs 

Using the results presented in (Petre and Selisteanu, 
2007b), firstly we present the input-output model of a 
complex DWDN with Mn  monitored nodes, In  
chlorine injection nodes and Tn  tanks, schematized 
in Fig. 1. Generally, in this network there could be 

In  chlorine transportation path sets from injection 
nodes to each tank, In  chlorine transportation path 
sets from injection nodes to each monitored node, 
and Tn  chlorine transportation path sets from storage 
tanks to each monitored node. Together, there are 
maximum ITTMIM nnnnnn ×+×+×  delays to be 
identified.  These  delays  can  be  calculated  over  a  

 
 
 
 
 
 
 
 
 
Fig. 1. Illustration of chlorine transportation delays 
           in a DWDN 
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considered modelling horizon mT  by using the path 
analysis algorithms described in (Petre and 
Selisteanu, 2007b). Finally, the delays are discretized 
and the discrete delay number set F (over the filling 
cycle), I (over a time slot) and D (over the draining 
cycle) can be obtained. 
The input-output model corresponding of these In  
inputs and Mn  outputs takes the form (Chang, 2003): 
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where:  
 )(,),(1 tyty

MnK  are chlorine concentrations at the 
Mn  monitored nodes; 

 )(,),(1 tutu
InK  are chlorine concentrations at the 

In  injection nodes; 
 fnS ,  and dnS ,  denote time-slots of filling cycle 
and draining cycle, respectively; 
 )(, tI jn  denotes delay number set that corresponds 
to )(tyn  associating with the thj  input, )(tu j ; 
 ijna ,,  are the model parameters that corresponds to 
the thn  output )(tyn  and the thj  input )(tu j  
associating with delay number I; 
 inb , , Tni ,,1K= , are the parameters corres-
ponding to the thn  output that describe dynamics 
caused by Tn  tanks; 
 )(tε  denotes the modelling error in )(tyn .  

The thn  output of the input-output model (1a), (1b) 
can be written in a compact form as:  
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for dnSt ,∈ , where jnujnljn Iii ,,,,, },,{ =K  for 

Inj ,,1 K= .  
Note, that (2) is in the same ARMA form like the 
model presented in (Petre and Selisteanu, 2007b). 
Since in a DWDN the interactions between the inputs 

and outputs are inevitable and there are not 
interactions between outputs, then a DWDN can be 
simplified as a number of Mn  multiple inputs – 
single output (MISO) systems. So, each MISO model 
structure can be identified by repeating the procedure 
individually for each output. Hence, the parameter 
estimation problem can be formulated for a MISO 
time-varying dynamical model with delayed inputs 
under uncertainties, which is given in a general 
ARMA form as:  

        )()()()( tttty T ε+θψ=           (3)  

where the model parameters )(tθ  are time varying, 
and the model error )(tε  is unknown but bounded. It 
must be noted that the structure error )(tε  is 
operating point dependent and could be very large 
under certain inputs. 

In (3) the regressor vector and parameter vector are 
defined as:  
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It must be noted that the operational control of a 
DWDN is repeated over certain period (typically, the 
control horizon used in practice is 24 hours) and is 
based on a nominal water demand prediction over 
this period. The values of niity ,,1),( K=−  and 

,,)( , Klkk itu − )( ,ukk itu − , mk ...,,1=  in the 
regressor )(tψ  can be obtained by using a DWDN 
simulator (named the implicit model) which is used 
to predict the real DWDN outputs, see Fig. 2, where 

)(tys  is the simulator output, )(tsε  represents the 
simulator error and )(tyDWDN  is the output that 
equals to real DWDN output. It is clear that DWDN 
simulator is considered the “plant” in parameter 
estimation process, and )(tys  is the plant output 
during estimation process. For clarity, in the 
following )(ty p  will represent the simulator output 
in the presenting of parameter estimation algorithm.  

A parametric model is the mapping from the input to 
the output space with proper parameters associated 
with the model structures such as transfer function or 
ARMA model. Considering a time-invariant system 
modeled by an ARMA expression:  

)()()( ttty T ε+θψ= ,             (5) 

 
 
 
 
 
 
 
Fig. 2. DWDN simulator in model estimation 



where θ  is the model parameter vector and )(tε  is 
the modelling error, with proper values of these 
parameters the mapping can make model output )(ty  
equal to the plant output )(ty p . Parameter estimation 
problem is the process of obtaining the value of θ  
based on a series of observations of )(ty  on a time 
horizon ],,1[ NK . Since the operational control of a 
DWDN is usually based on the prediction methods, 
the requirements of a robust predictive control do not 
impose exact parameter values of the model 
parameters. A robust predictive controller could be 
designed based on a bounded parameter model.  

If in model (3) we can find a bound of the error )(tε , 
that is max||)(|| ε≤ε t  with 0max >ε , then the 
observations })(,),2(),1({ Nyyy K  over modelling 
horizon N confines the parameter vector θ  to a 
feasible parameter set given by: 

   maxmax )()()( ε+≤θψ≤ε− iytiy T , Ni ,,1 K=   (6) 

Since in (6) both the observations )(iy  and the 
regressor vector )(tψ  are deterministic and bounded, 
we obtain that the value of each parameter iθ  in 
parameter vector θ  is bounded. 

This method named bounded concept (Chang, 2003) 
uses the a priori knowledge on modelling error or 
even parameter variation that usually is derived by 
mathematically analysis of physical system. 
Unfortunately, for the chlorine residual model (1) is 
not straightforward to obtain in advance the prior 
bounds on )(tε . Then, in order to make the model 
more feasible and efficient for control purposes, in 
the following section we present another approach to 
find the parameters’ bounds. Since in model (5) the 
uncertainties are located in two parts of model 
(parameters θ  and modelling error )(tε ), then 
instead of trying to construct a model with unique 
parameter vector, multiple parameter vectors are 
assumed that are associated with the inputs and 
modelling error, which leads to the introduction of 
point-parametric model. 
 

3. POINT-PARAMETRIC MODEL FOR 
PARAMETER ESTIMATION 

As stated before instead of trying to obtain in 
advance the prior bounds on )(tε , during estimation 
process it will be handled together with model 
parameters. The uncertainties in the parameter and 
structure error can be better explained by the point-
parametric model (Chang and Brdys, 2003).  

From the models presented in (Petre and Selisteanu, 
2007b), one can see that there are internal links 
between the uncertainty in the parameters and the 
uncertainty in structure error of the model which can 
expressed as:  

     ),()),,(,()( tuttuuMty ε+θ=           (7)  

where M denotes the model function, and u  is the 
input (as function of time). In the point-parametric 

model (7), the parameter θ  and the error ε  are input 
dependent. Uncertainty in the parameter can now be 
linked to the structure error uncertainty directly. Now 
it is possible to trade off the uncertainty distribution 
between the parameter and structure error and 
estimate them jointly. However, in order to get 
sufficiently rich information in the system outputs it 
is necessary to excite the plant with some specially 
inputs (Chang, 2003, Rossiter, 2003). It means that 
with this information, it will be possible to find a 
parameter set in the parameter space so that for any 
output there exists a parameter in this set such that 
the plant output can be produced by the model with 
this parameter.  

Since the uncertainties in the system may locate in 
the parameters and/or structure error part of the 
model, this results in two types of possible model 
structure differing in uncertainty allocation. The first 
type of model allocates all of the uncertainties in the 
process into model parameters, resulting in:  

           )),,(,()( ttuuMty θ=           (8)  

where the parameters is time-varying. . The second 
type of model explains the uncertainties in the 
process by constant parameters and a time-varying 
modelling error, as:  

     ),()),(,()( tutuuMty ε+θ=           (9)  

In both of the cases, the parameters and modelling 
error are input dependent. In the subsequence, based 
on the observations corresponding to some applied 
inputs, for the models (8) and (9) will be presented 
the algorithms for finding the bounds on parameters 
θ  and modelling error ε .  
 
3.1. Time-varying parameter  

First, we consider the model (8) with all uncertainties 
in the process locating only in the time-varying 
parameters.  

Problem formulation 1. For any plant input )(tu , 
there exists a pair })(),({ tt ψθ  so that equation 

)()( tty T θψ=  generates )(ty  that equals to the plant 
output )(ty p , for any t over the considered time 
horizon.  

Let )(⋅jy  denote the model response to input )(⋅ju  
over the time interval ],[ 00 mTtt + . According to the 
above problem formulation, there exist trajectories of 

)(⋅θ j  so that the model response equals to the plant 
response )()( tyty p= . Different inputs require 
different scenarios of )(⋅θ j  in order to match the 
plant responses, giving:  

            )()( tty jTjj θψ=         (10)  

It is assumed that the control input is valued on a 
compact set so that the trajectories of )(⋅θ j  can be 
bounded above and below over the time interval 

],[ 00 mTtt + . For robust control purposes, obtaining 
the exact envelopes over time is not essential. A 
constant least conservative envelope that can bound 



the exact envelope trajectory over time is estimated, 
which is sufficient for robust control design in the 
water quality control (Brdys and Chang, 2002b). 

To estimate the envelope of the parameters it is 
necessary to perform a series of experiments under 
input )(⋅ju , Ej ,,1 K= . The corresponding outputs 
are collected as )(⋅jy  from 1=t  to Nt = . A 
feasible parameter set corresponding to E inputs can 
be defined as:  

   )~,~(~)( ulj t θθΘ∈θ           (11)  

   )},()()(:)({)~,~(~ tttyRt jTjjMjul θψ=∈θ=θθΘ
∆

 
       (12) 

with NtEjt ujl ,,1,,,1,~)(~
KK ==θ≤θ≤θ , 

where )~,~(~ ul θθΘ  is the union of the parameter sets 
that are consistent with the inputs and corresponding 
measurements, lθ

~  and uθ
~  are the lower and the 

upper parameter bounds, M is the dimension of the 
parameter vector, E is the experiment number, and N 
is the number of observations under an experiment.  

Example 1. A two dimension ],[ 21 θθ=θ  example 
at time instant kt =  over time horizon ],,1[ NK  is 
shown in Fig. 3, where 51 ,, θθ K  are parameters 
corresponding to five inputs 51 )(,,)( ⋅⋅ uu K , 
respectively:  

         )()()( 111 kkky T θψ=   
          M            (13)  
         )()()( 555 kkky T θψ=  

According to problem formulation 1, there could 
exist multiple parameter values corresponding to one 
input. Values of jθ  are not unique as shown in the 
figure.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
  

 
 

)~,~(~ ul θθΘ  defines a union of the parameters 
bounded by an axis-parallel box, which is composed 
of at least one value of )(,),( 51 kk θθ K  respectively.  

When the box bounded space is the “minimum”, it is 
called the least conservative bounding of the union, 
that is *)~,~(~ ul θθΘ . The least conservative estimation 
for set )~,~(~ ul θθΘ  can be calculated by optimizing an 
index function :  

  ]~,~(minarg]~,~[
)](,~,~[

* ul

t

ul J
jul

θθ=θθ
θθθ

        (14)  

with )~,~(~ ulj θθΘ∈θ , where 

   )~~()~~()~,~( luTluul PJ θ−θθ−θ=θθ       (15)  
A possible choice of the matrix P could be the 

)( MM × -dimensional identity matrix, M being the 
dimension of the parameter vector. The formulation 
of the index is related to finding the minimum 
diagonal distance of the axis-parallel box that 
contains parameters that are consistent with the 
experiment data, in other word, we are looking for 
the “uncertainty-minimum” parameter sets that can 
explain the experiment data. When P = I, where I is 
an identity matrix, the performance index exactly 
represents the diagonal. Apparently, the result of (14) 
depends on the experiments. As the inputs are 
evaluated on a compact set it is possible to find a set 
of experiments so that the result of (14) is consistent 
with all the inputs. Finally a time-varying point-
parametric model with constant bounded parameter is 
obtained as: 
        )()( tty T θψ=             (16)  

         }~)(~:{~,~)(
** ulM tRt θ≤θ≤θ∈θ=ΘΘ∈θ

∆
  (17) 

This is a time-varying model in which parameters are 
bounded by constant envelopes.  
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3.2 Time invariant parameter formulation  

The uncertainties in the parameter and structure error 
can also be handled by the point-parametric model 
with time-invariant parameters and time-varying 
structure error. Let )(⋅jy  denote the model response 
to input )(⋅ju :  

      )()()( ttty jjTjj ε+θψ=         (18)  

Notice that )(tjε  must be time-varying as the 
parameters are constant.  

Problem formulation 2. For any plant input )(tu , 
there exists })(),(,{ tt εψθ  so that equation (18) 
generates )(ty  that equals to the plant output )(ty p , 
for any t over the considered time horizon.  

Similar to time-varying formulation, the feasible 
parameter set  Θ  can be defined as (Chang, 2003):  

        ),,,()](,[ ululjj t εεθθΘ∈εθ          (19)  

        )(:)](,{[),,,( 1 tyRt jMjjulul +
∆

∈εθ=εεθθΘ  

         )}()( tt jjTj ε+θψ=           (20) 

where ujl θ≤θ≤θ  and ujl ε≤ε≤ε  for 
,,,1 Ej K=  Nt ,,1 K= . 

The bound estimation can be calculated as follows: 

   ),,,(minarg],,,[
],,,,,[

* ulululul J
juljul

εεθθ=εεθθ
εεεθθθ

 

       (21)  
with ),,,()](,[ ululjj t εεθθΘ∈εθ , where  

)()(),,,( luTluulul PJ θ−θθ−θ=εεθθ  
)()( lulu Q ε−εε−ε+           (22)  

The choice of P and Q is the compromise of 
distributing uncertainty between the parameters and 
structure error. The selection is “optimal” that is with 
such P and Q the obtained model uncertainty 
“radius” is minimum, where the uncertainty radius 
can be defined using the worst-case output prediction 
(for details see Chang and Brdys, 2003; Chang, 
2003). A time-invariant model with constant bounded 
parameter was obtained as:  

  )()()( ttty T ε+θψ=           (23)  

  })(,:)](,{[
****1 uluiM tRt ε≤ε≤εθ≤θ≤θ∈εθ=Θ +

∆

            (24)  
 

4. CONCLUSIONS 

In order to obtain useful mathematical models for 
control, in this paper some aspects regarding the 
estimation of the parameters in the input-output 
chlorine residuals models of drinking water 
distribution networks were presented. Since the 
model parameters are time varying and heavily 
dependent on the hydraulics, which is a main source 
of uncertainties in chlorine concentration model, the 
model uncertainty parameters must to be estimated. 
Uncertainty of the model locates both in the 

parameters and modelling error part of the process 
model. Through inputs these two parts are linked and 
a point-parametric model is defined. 

Since the operational control of a DWDN is ussualy 
based on the prediction methods, then using the 
input/output data and a priori knowledge of the 
process, in this paper a method for the estimation of 
the bounding values corresponding to model 
parameters was presented. The obtained model is the 
least conservative  uncertainty model and could be 
used in a robust predictive control method.    
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