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Abstract: An alternative approach to Extended Kalman Filter (EKF) has emerged over the 
last few years, namely the unscented Kalman filter (UKF). This filter claims both higher 
accuracy and robustness for nonlinear models. This paper investigates the accuracy for 
nonlinear measurement models in particular  by comparing the performance of EKF and 
UKF for two tracking models having nonlinear measurements. 
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1. INTRODUCTION 

 
The problem of state estimation concerns the task of 
estimating the state of a process while only having 
access to noisy and/or inaccurate measurements from 
that process. It is a very ubiquitous problem setting, 
encountered in almost every discipline within science 
and engineering. The most commonly used type of 
state estimator is the Kalman filter. It is an optimal 
estimator for linear systems, but unfortunately very 
few systems in real world are linear. This 
linearization does however pose some problems, 
e.g. it can result in nonstable estimates (Julier, 1996). 
 
 The development of better estimator algorithms for 
nonlinear systems has therefore attracted a great deal 
of interest in the scientific community, because 
improvements here will undoubtedly have great 
impact in a wide range of engineering fields. 
 
A state space model is a mathematical model of a 
process, where the process’ state x is represented by 
a numerical vector. State-space models actually 
consists of two separate models: the process model, 
which describes how the state propagates in time 
based on external influences, such as input and noise; 
and the measurement model, which describe how 
measurements z are taken from the process, typically 
simulating noisy and/or inaccurate measurements. 
 
 
 

2. KALMAN FILTERING 
 
 
2.1 Extended Kalman Filter - EKF. 
 
Kalman filter deals with the general problem to 
trying to estimate the state x∈ of a discrete time 
controlled process that is governed by a linear 
stochastic difference equation. The question is what 
will happen if the process subject to estimation 
and/or relation between measurements and process 
are nonlinear. A Kalman filter that linearize about the 
current mean and covariance is referred in literature 
as an extended Kalman filter or EKF. In practice 
EKF often exhibits instability, particularly when 
targets cross and it can be extremely sensitive to 
initial state and error covariance values as well as the 
selected process noise covariance. The EKF is based 
on first order Taylor series expansion (linearization) 
about the state estimate but the accuracy of this 
expansion in series breaks down if the estimated state 
is too far from the true state. EKF seems to be well-
suited to handle gentle  nonlinearities. 
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It is important to specify that an EKF basically 
drawback  is that the distributions (or the densities in 
the continuous case) belong the various random 
variables are not normal anymore after they undergo 
those nonlinear transformations. EKF  is just an ad-
hoc state estimator that just approximate the Bayes’ 
rule optimality through linearization. There are 
interesting papers in the literature which develop 



EKF variations using methods that preserve the 
normal distributions passing through the nonlinear 
transformations. 
 
 
2.2 Unscented Kalman Filter – UKF. 
 
Let’s point out shortly the rough approximations of 
the EKF: EKF uses the first order terms from Taylor 
expansion; there are big errors when the models have 
strong nonlinearities; local linearity hypothesis  is no 
more valid when higher order terms became 
significant. To eliminate these deficiencies it was 
looked for another approximation. The unscented 
transformation (UT) is a method for calculating the 
statistics of a random variable which undergoes a 
nonlinear transformation and builds on the principle  
that is easier to approximate a probability distribution 
than an arbitrary nonlinear function. 
 
The problem of UT transformation is to propagate x 
– an nx dimensional random variable – through a 

nonlinear function  to generate  y : 
. The problem of propagating Gaussian 

random variables through a nonlinear function can 
also be approached using another technique, namely 
the unscented transform. Instead of linearizing the 
functions, this transform uses a set of points, and 
propagates them through the actual nonlinear 
function, eliminating linearization altogether. The 
points are chosed such that their mean, covariance, 
and possibly also higher order moments, match the 
Gaussian random variable. Mean and covariance can 
be recalculated from the propagated points, yielding 
more accurate results compared to ordinary function 
linearization. The underlying idea is also to 
approximate the probability distribution instead of 
the function. This strategy typically does both 
decrease the computational complexity, while at the 
same time increasing estimate accuracy, yielding 
faster, more accurate results. 
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The underlying method of unscented transform was 
first proposed by Uhlmann; he laid out the 
framework for representing a Gaussian random 
variable in N dimensions using 2N +1 samples, called 
sigma points. He utilized the matrix square root and 
covariance definitions to selectthese points in such a 
way that he had the same covariance as the Gaussian 
they approximated. Skewness was avoided by 
selecting the points in a symmetric way, such that 
any approximation error would only originate from 
the fourth and higher moments. Usage of the 
unscented transform in Kalman filtering was then 
presented by Julier; he introduced the Unscented 
Kalman filter (UKF), which approximates the state 
estimate using sigma points. 
 
A limitation associated with the unscented Kalman 
filter is that it has a lower bound on the safe spread 
of the sigma points, meaning the distance between 
the points in state space. Sigma point spreads below 

this bond are not guaranteed to yield positive 
semidefinite correlation matrices. This distance also 
increases with the dimension of the state space, a 
limitation that may cause problems in highly 
nonlinear models, since high sigma point spread may 
result in sampling of non-local features. 
 
The technique presented here is therefore based on 
the scaled unscented transform, which provides an 
additional tuning parmeter,α, compared to the 
original unscented transform. This parameter is used 
to arbitrary control the spread of the sigma-points, 
while at the same time guaranteeing positive 
semidefinite covariance matrices. Even models of 
high dimensonality can then keep a tight sigma point 
spread to avoid nonlocal effects. 
 
 

3. COMPARISON EKF-UKF 
 
The UKF compares favorably to the EKF in two 
other aspects as well. The UKF, like the EKF, forces 
the posterior density to be Gaussian, but the posterior 
mean and covariance are accurate to a third-order 
Taylor series expansion compared to first-order 
accuracy for the EKF. Finally, the UKF has the same 
order of computational complexity as the EKF. With 
these credentials, the UKF was expected to 
consistently outperform the EKF. 
 
The experiments described here aims at determining 
whether there are any difference between EKF and 
UKF for practical tracking applications, having linear 
process models and nonlinear measurement models. 
 

 
Fig.1. Illustration of how the Extended Kalman filter 

linearizes a nonlinear function around the mean 
of a Gaussian distribution, and thereafter 
propagates the mean and covariance through this 
linearized model 

 
Process Model. The basis for the experiment is an 
aeroplane, modelled linearly for position and  
velocity respectively, driven by white noise 
acceleration. The model  
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yields the following discrete time process model 
when assuming zero order hold with timestep Ts = 1. 

 
 
 
 
 



where the accelerations ax and ay are modelled as 
uncorrelated white noise with a variance of 0.5. 
 

 
Fig.2. Illustration of how the unscented Kalman filter 

propagates sigma-points from a Gaussian 
distribution through a nonlinear function, and 
recreates a Gaussian distribution, by calculating 
the mean and covariance of the results 

 
The process is assumed to start in the following state: 

with the squared error metric 

for estimation accuracy. 
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Tracking by Radar. Radar tracking can be modelled 
with a measurement model observing distance and 
angle to the target: 
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where the measurement model is clearly nonlinear. 
The radar is assumed to be positioned in the 
coordinates (0,0) with measurement noises n1 and 
n1, having a variance of 200 and 0.003, respectively. 
 

 
Fig.3. Tracking of plane motion by means of a radar 
 
Tracking by Triangulation. Tracking by triangulation 
can similarly be modelled with a measurement model 
observing distances to the target from two 
observators: 
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where the measurement model is also clearly 
nonlinear. The observators are assumed to be 
positioned in the coordinates (−300,0) and (300,0), 
with measurement noises n1 and n2, both having a 
variance of 200. 
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Fig.3. Tracking of plane motion by means of 
triangulation 

 
Results. A simulation/estimation experiment was run 
10000 times. Each time, a simulated plane trajectory 
were estimated over 80 time steps, by both EKF and 
UKF for both of the observation models. The 
estimation accuracy results are shown in the table 
below, with accuracy distribution plots in the 
accompanying figure. The MSE estimate variance is 
calculated from the empirical error distribution, using 
formula: VAR(MSE) = VAR(eroare) / N. 
 
Table 1. Comparison EKF-UKF by MSE (Accuracy 

variance is given in parenthesis) 
 

      Model MSE la EKF MSE la UKF 

     Radar 174,4 (5,00) 116,9 (0,363) 
Triangulation 185,2 (3,15) 183,1 (2,81) 
 
The radar model, having measurements involving the 
highly nonlinear arcus-tangent, shows a wider 
difference in the estimation accuracy between EKF 
and UKF, compared to the triangulation model which 
only has Pythagoras’ measurements, being 
significantly more linear. It can further be seen that 
UKF seems to show a higher degree of robustness, 
having fewer estimates with errors above 1000 for 
both of the models. Graphical representation of the 
estimation  error distribution proves that the two 
estimators produce similar results  for both models 
(figure 5). Figure 6 illustrate UKF action mode with 
an arbitrary trajectory of a target. 

Fig.5. EKF and UKF estimation errors in cases of 
radar and triangulation tracking 

 
 
 



 
Fig.6. Example illustration of observations, true 

trajectory and estimated trajectory for the 
experiments using the UKF 

 
 

4. CONCLUSION 
 
This paper did therefore compare the relative 
estimation accuracy of UKF compared to EKF for 
linear state space models with nonlinear 
measurements. The relative advantage of using UKF 
does seem to increase with the degree of nonlinearity 
in the measurement model. 
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