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Abstract: The purpose of the paper is to present an estimation method of the state vector 
of linear stochastic systems corrupted both with additive and multiplicative white noise. 
The observer design is based on an 2H -type optimization problem for the considered 
class of stochastic systems. The solution is given in terms of the solution of a specific 
system of Riccati and Lyapunov equations which in the absence of the multiplicative 
noise, reduces at the well-known filtering equation in Kalman-Bucy filtering. A 
numerical example illustrates the theoretical developments. 
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1. INTRODUCTION 

 
The filtering problem received a major attention from 
the early formulation and developments due to E. 
Hopf and N. Wiener in the 1940's in the military 
context and continuing with the famous results of 
R.E. Kalman and R.S. Bucy derived two decades 
later (see (Kalman, 1960) and (Kalman and Bucy, 
1961)). Since that period, the filters have been widely 
used in many areas of engineering sciences including 
aerospace applications, image processing, 
geophysics, etc. A comprehensive survey on linear 
filtering and estimation can be found in (Kailath, 
1974). An important property of a filter is its 
robustness with respect to the modelling uncertainty 
of the system whose state is estimated. It is a known 
fact that the filter performance significantly 
degradates in the presence of modelling uncertainty. 
Many papers have been devoted to the robust 
filtering in the presence of parametric uncertainty 
(see e.g. (Kalman, 1963), (Mangoubi, 1998)). 
However, there are applications in which the system 
parameters are subjected to random perturbations, 
requiring thus a stochastic modelling of the uncertain 

dynamic system. A natural way to introduce 
stochastic uncertainty is referred as multiplicative (or 
state-dependent) noise. Such stochastic systems have 
been intensively studied over the last four decades 
(see e.g. (Aström, 1970), (Wonham, 1970)) and a 
characteristic feature of them is that the random 
perturbations cease when the system reaches its 
equilibrium state. The stochastic systems considered 
in this paper are also corrupted with additive and 
multiplicative white noises. By contrast with the 
developments in (Stoica and Tiba, 2007) where the 
multiplicative white noise is present only in the state 
equation, in this paper the output equation also 
includes a state-dependent noise component 
enlarging thus the area of applications.     
 
A deterministic Luenberger observer-based structure 
is adopted because of its simple implementation. Of 
course, some better theoretical results could be 
obtained if a stochastic filter with multiplicative 
white noise would be considered but in this case 
difficult implementation occur since the component 
with multiplicative noise (also called diffusion term) 



is not measured. In the particular case when the 
multiplicative noise is missing the problem simply 
reduces to the classical Kalman filtering. 
 
The paper is organized as follows: the next section 
includes some notations, definitions and known 
results useful for the following developments. In the 
final part of Section 2, the statement of the filtering 
problem is given. The main result is presented and 
proved in the third section. It is illustrated by a 
numerical case study given in Section 4. 
 
 

2. PRELIMINARIES AND PROBLEM 
FORMULATION 

 
2.1 Definitions and preliminary results 
 
Consider the following stochastic system corrupted 
with multiplicative and additive white noise, 
described by the Itô equations: 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )dx t Ax t dt Dx t d t Bd t

dy t Cx t dt Gx t d t d t
ξ β

ν η
= + +
= + +

      (1) 

where nx ∈  denotes the system state vector, 
py ∈  is the measurement, , ,ξ β ν  and η  are zero-

mean independent Wiener processes on a given  
probability field ( ), ,Ω F P  . The matrices n nA ×∈ , 

n nD ×∈ , n mB ×∈ , p nC ×∈  and p nG ×∈ are 
assumed given. 
 
The next two definitions will be used in the following 
developments.  
 
Definition 1. The stochastic system with 
multiplicative white noise 

( ) ( ) ( ) ( )dx t Ax t dt Dx t d tξ= +            (2) 
is called exponentially stable in mean square (ESMS) 
if there exist 1β ≥ and 0α>  such that  

( ) ( )02
0, t tE t t e αβ − −⎡ ⎤Φ ≤⎢ ⎥⎣ ⎦

 

where [ ]E ⋅  denotes the expectation and ( )0,t tΦ  is 
the fundamental matrix solution of system (2), 
namely if ( )0 0, ,x t t x  is the solution of (2) with the 
initial condition 0x  at 0t  then 

( ) ( )0 0 0 0, , ,x t t x t t x=Φ ,  a.s.  The norm Φ  stands 

for the square root of the largest eigenvalue of TΦ Φ .  
 
For a symmetric matrix P , throughout the paper 

( )0 0P P≥ ≤  means that P  is positive (negative) 
semidefinite and 1 2P P≥  means that 1 2 0P P− ≥ . 
 
The stochastic stability of a system with state-
dependent noise of form (1) is characterized by the 
following result whose proof may be found for 
instance in  (Hasminskii, 1980).  
 

Proposition 1.  The system (1) is ESMS if and only 
if there exists a symmetric matrix 0X >  such that 

0T TA X XA D XD+ + < . 
 
The next result extends the well-known definition of 
the 2H  norm defined in the deterministic framework, 
at stochastic systems with state-dependent noise (see 
e.g. (Dragan et al., 1992)). 
 
Proposition 2. Assume that G  denotes an ESMS 
stochastic system with multiplicative and additive 
white noise described by the state equation 

( ) ( ) ( ) ( ) ( )dx t Ax t dt Dx t d t Bd tξ β= + +          (3) 

with the quality output 
( ) ( )z t Cx t= .                     (4) 

Then ( ) 2limt E z t→∞
⎡ ⎤
⎢ ⎥⎣ ⎦

 with ( )z t  determined for 

null initial conditions of (3) is well defined and by 
definition, the 2H -type norm of G  is 

( ){ }
1

2 2
2 : lim .tG E z t→∞

⎡ ⎤= ⎢ ⎥⎣ ⎦
 

Moreover, the  2H -type norm of the system (3), (4), 

has the expression ( )2
T

cG Tr C P C=  where ( )Tr ⋅  

denotes the trace of the matrix ( )⋅  and cP  is the 
controllability Gramian defined as the positive 
semidefinite solution of the Lyapunov-type equation 

0 .T T T
c c cAP P A DP D BB+ + + =           (5) 

 
The next preliminary result presented in this 
subsection directly follows from the monotonicity 
properties of the stabilizing solutions of algebraic 
Riccati equations (see e.g. (Wimmer, 1985)). 
 
Proposition 3. If 0X ≥  and 0X ≥  are the 
stabilizing solutions of the Riccati equations 

                1 0T TAX XA XC CX P+ − + =  
and  
             2 0T TAX XA XC CX P+ − + = , 
respectively (that is TA XC C−  and TA XC C−  
respectively, are Hurwitz), where 2 1P P≥ , then 
X X≥ . 

 
Finally, the following known result will be used in 
the proof of the main result in the next section. 
 
Proposition 4. If 1X  and 2X  are symmetric and  

1 2 0X X≥ ≥  then ( ) ( )1 2 0Tr X Tr X≥ ≥ . 
 
 
 
 
 



2.2 Problem formulation 
 
Given the stochastic ESMS system with state-
dependent and additive white noise (1), determine the 
Luenberger observer-type filter of form 

( ) ( ) ( ) ( )( )ˆ ˆ ˆdx t Ax t dt L dy t Cx t dt= + −  (6) 

such that A LC−  is Hurwitz and 2H  norm of the 
mapping 

( )
( ) ( ) ( ) ( )ˆ:
t

e t x t x t
t

β
η
⎡ ⎤

→ = −⎢ ⎥
⎣ ⎦

 

is minimized. 
 
 Remark 1. The observer (6) has the structure of a 
deterministic system. A more complex structure 
including  state-dependent noises components in (6) 
may provide better estimation results but in this case 
implementation problems occur since these noises 
cannot be directly measured. 
 

3. MAIN RESULT 
 
The solution of the estimation problem formulated 
above is given by the following result: 
 
Theorem 1. The optimal filter gain L  for which 

A LC−  is Hurwitz and ( ) ( ) 2ˆlimt E x t x t→∞
⎡ ⎤−⎢ ⎥⎣ ⎦

 is 

minimized is given by 
1TL XC K −=                         (7) 

where X  is the stabilizing solution of the Riccati 
equation 

1 0T T T TAX XA XC K CX BB DYD−+ − + + = ,  (8) 

Y  stands for the solution of the equation 

0T T TAY YA DYD BB+ + + =              (9) 
and  
                             : TK I GYG= + .                    (10) 
 
Proof. Coupling the systems (1) and (6) one obtains  

( )ˆ ˆ
dx Axdt Dxd Bd
dx A LC xdt LCxdt LGxd Ld

ξ β
ν η

= + +
= − + + +

 

Subtracting the above equations it results the 
following equivalent system 

( )
,

de A LC edt Dxd LGxd Bd Ld
dx Axdt Dxd Bd

ξ ν β η
ξ β

= − + − + −
= + +

 

namely, 

0 0
0 0

0
0 0 0

de A LC x D x
d

dx A e D e

LG x B L d
d

e B d

ξ

β
ν

η

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

+ +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

      (11) 

with the output ˆe x x= − . 
 

The 2H  norm of the above system is ( )TTr C PC   

where [ ]0C I=  and  

0T

X Z
P

Z Y

⎡ ⎤
= >⎢ ⎥
⎣ ⎦

 

is the solution of the Riccati-type equation 
0 0

0 0

0 0
0 0

0 0
0 0 0 0

0
0 0

T

T T

T

T

T

T

T

X Z X ZA LC A LC
A AZ Y Z Y

X ZD D
D DZ Y

X ZLG LG
Z Y

B L B L
B B

⎡ ⎤ ⎡ ⎤− −⎡ ⎤ ⎡ ⎤
+⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

⎡ ⎤⎡ ⎤ ⎡ ⎤
+ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦⎣ ⎦

⎡ ⎤− −⎡ ⎤ ⎡ ⎤
+ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦⎣ ⎦

− −⎡ ⎤ ⎡ ⎤
+ =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 (12) 

The block (1,1) of the above equation gives: 

( ) ( )
1

1 1 0

T T T T

TT T

AX XA XC K CX BB DYD

L XC K K L XC K

−

− −

+ − + +

+ − − =
      (13) 

where K  is defined by (10), and the block (2,2) 
coincides with (9). 
Since the 2H  norm of the system (11) is ( )Tr X , 
from Propositions 3 and 4 it follows that this is 
minimal if the last term in the left hand side of  (13) 
vanishes, namely if L  has the expression (7) with X  
being the stabilizing solution of (8) and thus the 
proof ends. 
 
Remark 2.  The optimal filter gain L  given by (7) is 
computed solving first the equation (9) (which has a 
solution 0Y ≥  since the system (1) was assumed to 
be ESMS) and then the Riccati equation (8). In order 
to solve the Lyapunov-type equation (9) one can use 
the iterative procedure: 

1 1 0, 0,1,...T T T
k k kAY Y A DY D BB k+ ++ + + = =  

with  0 0Y = . The proof of the convergence of 
sequence 0kY ≥  may be found in a slightly modified 
version in (Dragan et al, 1997). 
 
Remark 3. In the absence of the state-dependent 
noise in both equations (1), namely if 0D =  and 

0G = ,  the result stated in Theorem 1 simply 
reduces to the classical Kalman-Bucy filter. 
 

4. A NUMERICAL EXAMPLE 
 
In order to illustrate the theoretical results derived in 
the previous section one considers the stochastic 
system with multiplicative noise (1) with 



0 1 0.5 0.3 1
, , ,

1 0.4 0.3 0.12 1

0.5 1 0.25 0.5
,

0.25 0.5 0.5 0.75

A D B

C G

⎡ ⎤ ⎡ ⎤ ⎡ ⎤−
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤−
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

 

Using Theorem 1 and Remark 2 one obtains the 
optimal gain 

0.8211 0.1219
0.8649 0.2848

L
⎡ ⎤− −
⎢ ⎥= ⎢ ⎥⎣ ⎦

 

for which the eigenvalues of A LC−  are 
{ }0.8937 0.9687 j− ±  showing thus that the 
obtained observer is stable.  
In Figure 1 the following time responses are plotted: 
in (a) the true states of the stochastic system (1), in 
(b) the measured outputs of (1) and finally in (c), the 
outputs of the observer (6). Analyzing the plots in 
Figure 1a and Figure 1c one can see that they are 
very similar which fact indicates very good 
estimation properties of the resulting observer. 
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Fig. 1. Time responses: (a)-true states, (b)-measured 
      outputs, (c)-estimated states  
 
 

5. CONCLUSIONS 
 
The present paper treats an estimation problem for 
linear stochastic systems corrupted with both additive 
white noise and with state-dependent noise. The 
considered structure of the observer is a deterministic 
Luenberger-type one which gain is determined by 
minimizing the 2H  norm associated with the 
mapping from the exogenous additive white noises to 
the estimation error. It is shown that the optimal gain 
depends on the solution of a system of algebraic 
Riccati and Lyapunov equations. In the particular 
case when the state-dependent noise is missing this 
system simply reduces to the well-known filtering 
Riccati equation from the Kalman-Bucy filtering 
theory. A numerical example illustrates the 
theoretical developments. 
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