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Abstract: There is an increasing interest in modelling biochemical pathway as dynamic 

systems. The main challenge is the necessity to drastically decrease the huge number of 

parameters involved in the biological process, thus operating a selection, which renders 

analytical dynamic models tractable. This paper comments a three order non-linear 

differential model of a sepsis shock and proposes a MATLAB-Simulink simulation model 

which captures both the free evolution and the treatment of the infection. Additionally, 

the opportunities offered by using hybrid modeling are underlined and two applications 

based on models that include resetting hybrid systems are presented.  
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1. INTRODUCTION 

 

Biological systems are complex systems built from a 

dynamic web of interconnected feedback loops 

marked by interdependence, and redundancy. Illness 

represents a systemic functional alteration in the 

human organism. Multiple organ dysfunction 

syndrome (MODS) represents the ultimate multi-

system illness, really representing a common end 

stage pathway of inflammation, infection, 

dysfunctional host response and organ failure in 

critically ill patients, and frequently leading to death. 

Because in MODS host-related factors were shown 

to be associated with patient outcome, the focus 

shifted to the study of host response in trauma, shock 

and sepsis. Usually, sepsis represent the systemic  

inflammatory response syndrome (SIRS) associated 

with infection. The most critical aggravation of 

sepsis  is the septic shock.  In  intensive care units  

(ICUs) the septic shock is an event which only  

rarely  occurs, but which indicates a very critical 

condition of the patient. Up to now, there is neither a 

successful clinical therapy to deal with this problem  

nor  are  there  reliable  early  warning  criteria  to  

avoid  such  a situation. The diagnosis of septic 

shock is still made too  late, because  at  present  

there  are  no  adequate  tools  to  predict  the 

progression of sepsis to septic shock. The  criteria  

for  sepsis  are both non-specific and potentially 

restrictive [1].  

Our main  goal  is  the  statement  of  diagnosis  and  

treatment  on  the  rational ground of septic data. By 

the data analysis we aim to elaborate a model of the 

dynamic response of the immune system, in order to   

provide the necessary prerequisites for a more 

successful conduct of innovative therapeutic 

approaches and for improved diagnosis and treatment 

of septic shock. 

The discovery of multiple proinflammatory 

mediators including  endotoxin, tumor necrosis factor 

(TNF)-α and interleukin (IL)-1β or (IL)-6 brought 

about new theories regarding the patho-physiology of 

MODS and in particular in Sepsis. The immune 

system is a highly complex and integrated system 

which has evolved to provide the organism with 

substantial defenses against pathogenic organisms. In 

order to perform this function, the immune system 

has evolved strategies that allow successful 

elimination of a wide variety of pathogens, including 

viruses, bacteria and parasites. At its turn, the 

immune response to pathogens is a complex, highly 

regulated system involving numerous interactions 

between different cell types. The cells of the immune 

system communicate with each other by direct cell-

cell contact and deliver signals to each other directly, 

through cell surface molecules, or indirectly, via 

secreted proteins, known as cytokines. Experimental 

advances in immunology over the last two decades 

have been immense and many of the important 

questions surrounding the issues of pathogen 

recognition, immune cell development, immune 



     

regulation and effector mechanisms are well on the 

way to being answered [2]. What seems to be an 

important result is that the immune response evolves 

rapidly in time and its interactions are all highly 

regulated, that means that the only real way to study 

the whole integrated system is through the use of 

mathematical modeling. Mathematical models can be 

used to analyze experimental results and provide 

predictions and suggestions for follow-up 

experiments, or they can attempt to synthesize 

existing knowledge and provide a theoretical 

framework for the interpretation of existing 

paradigms.  

 

 

2. SEPSIS MODELING APPROACHES 

 

The evolution in every biological phenomenon, 

including Sepsis, can be considered as a result of 

information transfer in a complex cellular/molecular 

communication system.  Although molecular biology 

is mainly focused on identification of genes and 

functions of their products, which are components of 

the system, the major challenge in analyzing sepsis is 

to understand at the system level the biological 

system within a consistent framework of knowledge 

built up from the molecular level to the functional 

system level – not only gene networks, but also 

protein networks, signaling networks, metabolic 

networks and specific systems such as the immune 

system.  At a very abstract level, a cell can be 

divided into two general sub-networks, a regulatory 

network [3] and a metabolic network [4]. The 

metabolic network is mainly occupied with substance 

transformation to provide metabolites and cellular 

structures. The regulatory network’s main task is 

information processing for the adjustment of enzyme 

concentrations to the requirements of variable 

internal and external conditions. 

One of the first used in model molecular interactions 

were the stochastic methods. In the stochastic 

modeling approach, rate equations are replaced by 

individual reaction probabilities and the output has a 

physically realistic stochastic nature. But in the cell, 

various components interact in diverse manners. All 

cellular subsystems are highly nonlinear, and 

subsystem couplings are often nonlinear as well. 

There is no universal algorithm that can efficiently 

simulate all subsystems at once, so simulators must 

allow multiple computation algorithms to coexist in a 

single model. What has not been taken into account 

yet is the humoral network of intercellular 

communication, which links intracellular signaling 

networks of different cells and cell types. Cells 

communicate in various ways. In this work, we 

concentrate on humoral communication through 

cytokine messengers in the human body in general 

and in a sepsis state especially.  The related 

substances act as first messengers and thus are 

released from specific cells to regulate functions in 

distant target cells by binding as ligands to specific 

receptors. One can consider that there are two kinds 

of communication mechanisms for SEPSIS 

modeling, both based on signal transduction in 

biological networks. The first mechanism can be 

represented by signaling intracellular networks, the 

other by signaling intercellular networks.  

Signal transduction networks allow cells to perceive 

changes in the extracellular environment in order to 

produce an appropriate response. A cellular process 

network mediates the transmission of extracellular 

signals to their intracellular targets. The external 

signals are transmitted to the interior of the cells 

through receptors activating diverse signaling 

pathways. Computational models in signal 

transduction pathways have been made using 

different types of information processing present at 

cellular level, such as sequential, parallel, distributed, 

concurrent and emergent. In this sense, several 

computational approaches have been proposed to 

model the cellular signaling pathways, such as 

artificial neural networks [5], Boolean networks [6], 

Petri nets [7], rule-based systems [8], cellular 

automata [9], and multi-agent systems [10]. 

From the above mentioned methods, in this paper we 

focus on those based on Differential Equations 

System (DES) model. We will mention two kinds of 

DES: 

Ordinary Differential Equations (ODE). The general 

form of an DES model can be written as 

nixf
dt

dx
i ,...,2,1),( == ,  where xi , 1≤ i≤ n are states 

of molecular species. In a molecular network model, 

an ODE equation is built for each molecule x 

quantitatively describing its relationship with all 

relevant molecules and solving all equations 

simultaneously. There have been several platforms 

for ODE based modeling. Among them are Gepasi 

[11] and Virtual Cell [12]. However, though 

metabolic reactions can be simulated by these tools, 

signaling activities may not be well supported. 

Furthermore, signaling networks are non static and 

undergo evolution [13]. Thus, modeling of the 

context dependent cellular processes merits a more 

elaborated approach, like hybrid modeling, which is 

our proposal for improvements of model credibility.  

Stochastic Differential Equations(SDE). SDE has 

been adopted to study physical system with random 

elements, including population dynamics, stock 

market fluctuations and protein interaction. SDEs 

cannot be solved analytically, and simulations are 

necessary. It involves the following steps: 1) to 

compute various sample paths and determine the 

stability and convergence of each trajectory and 2) to 

compute the approximation to the probability 

distribution of the solution and determine various 

statistical measures such as mean and variance. 

The general form of SDE is 

 )(),(),( tntxbtxa
dt

dx
+=  where xi , 1≤ i≤ n are states

 

of molecular species, a(x,t) and b(x,t) represents 

changes of x in time t and n(t) represents the noise 

term that is dependant on time t. 



     

3. DES BASED MODEL FOR THE CELLULAR 

INTERACTIVITY IN SEPSIS 

 

 

A solution based on Differential Equations System 

(DES) has been practically used in many quantitative 

models. The molecular or cellular network is 

modeled as a collection of (usually nonlinear) 

differential equations, where reaction rates and 

compound concentrations are the variables. These are 

solved then numerically for each time step. 

Stoichometric coefficients, starting concentrations 

and rate constants for all interactions are needed. Due 

to the complexity of the biological phenomenon, 

biochemical pathways of molecules can be modeled 

by many differential equations, with a huge number 

of parameters. In this regard, complex biological 

processes are modelled by differential equations 

systems with up to 7000 equations and 20000 

associated parameters [14]. Starting from model with 

16 differential equations and 117 parameters [15], 

Brause uses a reduced order approximation model, 

with three variables.  So pushing the limits we have a 

3-rd order non-linear approximating dynamical 

model of septic shock, which was implemented as a 

MATLAB-Simulink simulation model of several 

Sepsis treatment scenarios.  

 

A. The Differential Equations System of the model 

As basis was used Brause’s reduced order 

approximation model, with three variables: 

• P representing the pathogen influence, 
]1,0[∈P
, 

• M representing the immune response, namely 

the macrophage action, ]1,0[∈M , and 

• D representing the percent of damaged noble 

cell tissue, which is destroyed in the fight 

between P and M, ]1,0[∈D . 

The dynamic equations are: 

MPPPP 21 )1( α−−α=& , 0>α i , 2,1=i          (1) 

))(1( 321 DPMMMM β+β−+β−=& , 0>β i 3,1=i  (2) 

)/)(( 321 χθ−χ+χ−= MhDD& , 0>χ i , 3,1=i       (3) 

where 5.0=θ  is a threshold value. A typical 

parameter regime takes the maximal values specified 

in Table 3 and  

)exp(1

1
)(

x
xh

−+
=

    
(4) 

The maximal parameter values are as follows: 

α1=0.1; α2=1.0; β1=1.0; β2=10.0; β3=1.0; β1=1.0; 

γ1=0.1;γ2=0.04; γ3=0.25;   (5) 

    

The dynamical model described by equation (1)-(3) 

reflects some basic qualitative features of the sepsis 

phenomenon and assume that the rate of cells 

damage increases also with a sigmoid function (4) of 

macrophages action, limited by a threshold θ. The 
introduction of h(x) represents the main improvement 

in the Brause model.  

 

B. Results of Sepsis dynamics simulation 

Consider firstly the case of the free evolution of 

sepsis shock, given by equations (1)-(3). The 

simulation is performed in MATLAB, using the 

ODE45 integration routine based on the Runge-Kutta 

procedure (Fig.1) with the constant parameter values 

given in (5). The Simulink model schemes were 

elaborated by Ecaterina Oltean [16].   
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Fig. 1.  MATLAB simulation results for (1)-(3) DES 

An important change in the initial model was to 

introduce a parameter that signifies the initialization 

of a treatment (medication procedure). That is the 

main difference between Brause approach and ours, 

Sepsis treatment can be modelled by introducing an 

exogenous signal into the right hand term of (1): 

 
T(t)=

 

 ∈∀=

else

Nkkptwhenl

,0

,:,

     
(6) 

where l is the level of medication and p is the period 

of administration.  

   Now let consider first the case of an asymptotically 

constant treatment. A straightforward way to model 

this case is by introducing, as control signal, the 

negative output of a first order element with a step 

input. The parameters values are the same as in (5) 

with initial conditions specified in Fig.1. The step 

height is chosen 0.18, which reflects an 

approximation of the stationary value of the pathogen 

action. The simulation results are depicted in Fig.2, 

column of the left. 

   The second case considered is an asymptotically 

constant treatment with delay. This models the 

situation in which the treatment is decided after the 

pathogen action reaches a maximum. The considered 

delay is 70 time units. The pathogen influence, 

macrophage action and damaged tissue percent are 

depicted in Fig. 2, column in the middle. 

   Finally, the third case considered in the simulation 

experiment is the one of a “cheap” treatment, 

represented by a delayed pulse control signal. This 

could capture the situation in which the doses are 

administrated at regular time intervals, and the dose 

might be too little to cover the entire time interval to 

the next dose administration. The only modification 

introduced in the Simulink model is the replacement 

of the step input with a pulse generator with a period 

of 10 time units. The corresponding simulated 

evolutions of the pathogen action, macrophage action 

and damaged tissue are presented in Fig. 2, column 

of the right.  
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Fig.2. Simulated evolution of the pathogen action (P), macrophage action (M) and damaged tissue (D) 

 

One can observe that the approximating sepsis 

dynamics (1)-(3) is a well-suited model also for a 

more general “war game” approach, in which a 

protection agent (the macrophage action M) fights 

against an invader (the pathogen action P), but 

produces also collateral victims (the cell damage D) 

in its actions. 

In the simulation, the height of the step control input 

representing the treatment was chosen empirically, in 

two steps. Firstly, by inspecting the final (stationary) 

values of the free sepsis evolution in Fig.1(a), the 

point 

]1.0,15.0,2.0[)]0(),0(),0([0 == DMPx
 is 

chosen as starting point for the numerical search of a 

stationary point of system (1)-(3). The obtained 

stationary point is x0 = [0.183, 0.157, 0.092]. 

Consequently, the height of the step control input for 

the pathogen action P is chosen as 0.18. The same 

value holds also for the height of the pulse. 

Simulations show that treatment is possible in case of 

an asymptotically constant input with the height 

value similar to the stationary value of the free 

pathogen action, and also if this treatment is delayed 

or administrated at regular time intervals.  

4. A PROPOSAL FOR HYBRID MODELING 

 

Hybrid modeling can have multiple meanings. First 

of all, a model containing metabolic and signaling 

networks is a hybrid model. Actually these two 

networks are not independent of each other. In such 

model, very often, different description methods 

should be employed to disclose different aspects or 

parts of a biological system, because, when ODEs 

are used to describe deterministic events, the basic 

assumption on continuity and determinism in ODE 

methods hamper the true representation of noise and 

stochastic events in cellular environment [17]. The 

second approach on hybrid modeling derived from 

the expertise of control systems and computer 

science specialists. From their point of view, hybrid 

systems are characterized by continuous evolution of 

process variables, governed by differential equations 

or difference equations, and discrete transitions. 

Hybrid phenomena include switching between 

different dynamics due to changes in a model’s 

operating conditions or a control action, as well as 

state resets at discrete instants of time. Such 

transitions can be triggered by state events, time 

events or memory. 



     

The analysis of stability of hybrid systems has lead to 

several important results in the last few years. For 

systems with state resets, usually referred to as 

impulsive systems, a common Lyapunov function 

was used to analyze both continuous-time dynamics 

and the discrete-time dynamics of the resetting law 

[18], [19]. In the line of these works, we propose to 

improve the model of patient evolution in Sepsis 

under treatment, discussed in section 3, by using as 

model a resetting hybrid system (RHS), also known 

as impulsive system. RHS is defined as a system 

combining continuous state variables, governed by 

differential equations for which some or all of its 

states are being reset at discrete time instances via a 

resetting law, i.e., a difference equation. The discrete 

states are the indexes of these resets. 

A hybrid resetting system is defined by the equations 

jttttxftx ≠= ),),,()(&
 

jttttxhtx ==+ ),),,()(
                              (7) 

))(,),,()( tjttxgtj =+

 
Here, ∈t R+ and ∈x R

n 
is the continuous state and 

the discrete state ∈j N+ is a piecewise constant 

signal, which is the resetting index. The discrete state 

can be triggered by a state event, a time event or 

discrete state history, i.e., memory.  

A resetting system is associated with differential 

dynamics: 

jc tttxtxJtx
dt

d
≠= ),(),()( δδ

           
(8) 

,...2,1,),(),()( ===+ jtttxtxJtx jd δδ
 

where xtxftxJc ∂∂= /),(),(  is the Jacobian of the 

vector field f; xtxhtxJd ∂∂= /),(),( is the Jacobian 

of the vector field h and tj is the j
th
 resetting time. 

For resetting systems, where for every specific 

resetting sequence {(tj,h(tj))} we can represent the 

system (7) by a single differential equation 

representing a particular system  

)),,()( ttxftx r

∗=&
   

(9)  

Note that (9) is an impulsive differential equation, 

i.e., 
∗
rf  contains Dirac impulses, which is another 

method to represent resetting systems. Again when 

the differential dynamics (8) is exponentially stable 

for all sequences {(tj,h(tj))} then the system is 

contracting [20]. Then, all solutions of each 

particular system (9) converge exponentially to a 

single particular trajectory. Consequently a hybrid 

resetting system of type (7) is said to be contracting 

if and only if the associated differential dynamics of 

(8) is uniformly exponentially stable.  

 

5. ADAPTING A HYBRID MODEL FOR BETTER 

SEPSIS SIMULATION 

 

 

The hybrid solution was used to model the response 

of a patient affected by Sepsis, when a treatment is 

introduced (see equ. 6). The hybrid approach allows 

to differentiate between two kind of systems – 

without or with antibiotics. In the first situation one 

can consider that the treatment appears as a sequence 

of Dirac impulses, in the second, due to the persistent 

effect of antibiotics, the signal representing the 

treatment can be considered as continuous.  Three 

cases of simulation for the situation when the 

pathogen attack is weak are presented in fig. 3.: a) 

absence of medication;  b) medication with pulses of 

period p=20; c) contiuous medication with intensity 

level n = 0.3. 

                 
         a)                     b)                     c) 

Fig. 3. Simulations of the response to medication 

 

The pictures in fig.3. suggest the following remarks:  

a) In the absence of medication the affection trends 

to chronic disease  

b) Because the effects of the pathogen attacks are 

practically cancelled after medication, one can 

consider the  treatment as correct. 

c) The introduction of antibiotics was not necessary  

 

 

6. CONCLUSIONS AND FUTURE WORK 

 

   In this work we focused on Sepsis, one of the most 

complicated processes due to the diversity of 

involved cellular pathways.  The most challenging 

task was to simulate collaborative interactions among 

molecules that produce and transfer signals. 

Signaling pathways, the most difficult to model due 

to a heterogeneous mix of activities involved, can be 

seen as a kind of molecular body language. It is the 

main argument to use this way in modeling Sepsis 

phenomena.   In the deterministic case of a DES with 

no random influences, the parameters can even be 

directly computed: m samples give us m equations 

for m parameters that are easily computable by the 

well-known Gaussian elimination method. The 

discriminative variables are selected from the set of 

all variables which were sufficiently often measured. 

Quite variables like the concentrations of specific 



     

cytokines and the inflammation state 

(hyper/hypoinflammation) of the patients were not 

available to our analysis, one could agree that the 

used equations give a good description of the first 

step in endotoxin tolerance and consequently offer a 

satisfactory prediction of the immune system 

response and on the efficiency of a treatment.  One 

can observe when the system returns to the ''initial 

condition'' or in another stabile state. This seems 

compatible with the intuition of the role of the innate 

immune system as a protector again attacks. 

However, because our predictive variables are very 

general and are influenced by a myriad of 

biochemical processes we do not attend a better 

performance by specific molecules. 

An improvement can be made be using hybrid 

modeling, that contribute to better understanding of 

cell behavior at different level of interest namely the 

molecular level, process level and disease level. An 

improved simulation was obtained by exploiting 

exponential convergence of hybrid nonautonomous 

resetting systems. In the proposed model the 

description of the transition of resetting hybrid 

systems is reduced to a simple compositional 

operation. This yields stability conditions 

generalizing and relaxing several existing results. 
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