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Abstract: The paper presents a torque estimator for an eddy currents brake dynamic 
model based on the two axis theory and on the excitation current and angular speed direct 
measurements. The main idea is to proceed as in the induction machine sensorless speed 
estimation. The basic application of torque estimator would be the on-vehicle brakes 
optimization. In previous works, the author has validated the dynamic model by 
comparing experimental and predicted results in off-line operation. However, as shown in 
this paper, in on-line operation, in presence corrupting measurement noise, the estimator 
is inconsistent. 
 
Keywords: systems identification, estimators, eddy current brakes. 

 
 
 

1. INTRODUCTION 

Fig. 1. The eddy currents brake’s control system. (1) 
– input filter; (2) – torque compensator; (3) – 
excitation current compensator; (4), (5) phase-
controlled voltage supply; (6) – eddy currents 
brake; (7) – active load ; (8) – torque transducer; 
(9) - transducer's signal conditioner. 

 
The eddy currents brakes are synchronous machines 
that transform by electrical means the mechanical 
energy received to the shaft into thermal energy 
transferred to a cooling environment.  
 
Eddy currents brakes are used to determine, on test-
bands, the characteristics of various active loads such 
as electrical motors, thermal engines, transmission 
components: gear boxes, power assemblies and so. 
They are also used as braking element for heavy 
vehicles such as rails and lorries to enhance braking 
into high-speed domain.  
 
Today eddy currents brakes are less used to testing 
active loads because of their poor energetic 
efficiency; variable-speed induction motors supplied 
from four-quadrant three-phase inverters are used 
within such applications.   Instead, eddy currents 
brakes have interesting features to braking pedestrian 
vehicles. It is proven that eddy current brakes are 
twice efficient than the classical mechanical brakes; 
additionally these brakes are pollution free, they don't 
transmit mechanical vibrations and they are simple 
and reliable. 
 
When used as torque measuring element on test 
bands the eddy currents brakes' operation is 

optimized through a control system to maintain either 
constant braking torque, Mel, or constant angular 
speed, n, or constant ΔM/Δn ratio.  
 
The control system's structure is depicted in Fig. 1. In 
on-vehicle applications the eddy currents brake’s 
operation is simply controlled through the excitation 
current modification using a controller. The basic 
problem in such applications is the on-line braking 
torque measurement. However torque measurement 
requires an adequate torque transducer and a 
conditioner that are not suitable for on-vehicle 
applications. An alternative to the direct torque 
measurement would be torque estimation using a 



dynamic brake model and the angular speed and 
excitation current direct measurements such as in the 
case of induction machines, see (Campbell et al., 
2007a). The electromechanical variables estimation 
is closely related to the electrical parameters 
estimation. In the literature, the experimental 
identification of the electric machines parameters is 
presented in (Vas, 1998) for the induction machines 
and in (Söderstrom and Stoica, 1989) for the case of 
the DC machines. The sensorless speed estimation 
for the induction machine is widely presented in the 
literature; an algebraic approach in presented in 
(Campbell et al., 2007b). 
 
The paper presents a torque estimator based on the 
two axis dynamic model of the brake. Subsequently, 
an analysis of the estimator consistency when taking 
into account the measurement noise effect onto the 
estimate is performed. 
 
 
2. DIRECT AND QUADRATURE AXIS MODEL 

FOR THE EDDY CURRENTS BRAKES 
 
The general direct and quadrature axis theory is the 
adequate approach to determine the dynamic models 
of all classical electric machines, (Henneberger, 
2004). The two axis theory approach in the particular 
case of the eddy currents brakes with transversal 
excitation field is presented in (Dănilă, 2006), 
starting from the salient poles synchronous generator. 
The dynamic set of equations is as follows. 
 
1. Voltage equations: 
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2. Electromagnetic torque equation: 
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3. Flux linkage equations: 
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4. Voltage equations of the equivalent load: 
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where:  

Fqd ,, Ψ′ΨΨ : flux linkages components with respect 
to Od and Oq axis and the excitation flux 
linkage respectively; 

'
Fqqdd i,i,u,i,u : induced voltages and induced 

currents components with respect to the Od and 
Oq axis referred to the induced; 
p,,ωΩ : the rotor angular speed, the angular 

frequency of the electric variables within the 
induced and the pair poles of the brake, 
respectively; 

J,M,M Ael : the electromagnetic torque, the torque 
of the active load and the axial inertia moment 
of the load, respectively; 

OLOL L,R : equivalent resistance and inductance of 
the brake's induced; 

Fqdhd L,L,L,L ′ : the magnetization inductance, the 
self-inductance with respect to the Od and Oq 
axis of the induced and the self-inductance of the 
excitation winding. 

 
The input variable, or the command, is the excitation 
current, , the output variable, or the measuring 
variable is either the angular speed,  or the 
electromagnetic torque of the brake, .  
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The set of equations (1 - 6) is non-linear and cannot 
be solved analytically. Due to the electrical variables 
within the induced that are not accessible to direct 
measurements, the set of equations cannot be solved 
numerically as it is. In (Dănilă et al., 2007), a field 
analysis with FEM method is performed for the eddy 
currents brakes with transversal excitation field.  
 
The main conclusion of that study is that the 
demagnetizing effect of the induced currents on the 
Od axis is much less important than the transversal 
magnetizing effect of these currents. Therefore, in the 
set of equations (1 - 6) the following approximation 
is valid: 0i,0u dd == .  
 
With the time constants: 
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= i.e. induced and excitation winding time constants, 
respectively, the set of equations (1 - 6) is modified 
as follows: 
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Induced and inductor circuitry are first-order 
systems. The first equation proves that the excitation 
current controls the induced current. The third 
equation gives the link between the excitation 
current, the induced current and the electromagnetic 
torque. The command is the excitation current and 
the controlled variable is the electromagnetic torque.  
 
The set of equations still is non-linear but the 
electromagnetic torque may be computed with 
iterations with the hypothesis: the angular speed or 
the angular frequency of induced variables is 
constant. This hypothesis is always valid because the 
electromechanical time constant is much greater than 
the electric time constant of the induced. 
 
In this approach, in the set of equations (8) the 
derivatives are approximate with the Euler-Cauchy 
formula as follows: 
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where: 

( ) ( kk ty,tty Δ+ ) : are the values of function y at 

instances ,  respectively, and ttk Δ+ kt tΔ  is 
the sampling period. 

 
The following algorithm is obtained: 
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  (10.a-c) 
For a consistent estimation of the electromagnetic 
torque with algorithm (10), both electric parameters 
of the brake must be known and the effect of noise on 
the measurements must be evaluate. 
 
 

3. TORQUE OBSERVER 
 
In (Campbell et al., 2007b) is presented an algebraic 
method for the estimation of the rotor time constant 
in the induction motor. The proposed method is 
based on the deduction of a polynomial equation in 
TR whose coefficients depend on the stator currents, 
stator voltages and their derivatives. For the eddy 
currents brake time constant Td determination, the 
induced voltage and current components uq and iq 

should be directly measured. Because this action is 
practically impossible another method is used to 
determine the electrical parameters of the brake by 
analyzing field distribution within the air gap and the 
induced with FEM method. Validation of the results 
is performed by comparing the computational data 
with a steady-state set of measurements. 
 
The analysis of measurements noise on the torque 
estimate may be founded on the ideas presented in 
(Söderstrom and Stoica, 1989). The set of differential 
equations (8) is split into two subsystems as shown 
below. 
 
 
3.1. The dynamic model of the induced 
 
The continuous-time process described through the 
constant-coefficients differential equation (8.a) is 
converted into a discrete-time process with the Euler-
Cauchy method - Te is the sampling period – and the 
following difference equation is obtained: 
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With the one-step-delay operator the equation (11) is 
converted into the operational equation: 
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3.2. The dynamic model of the electromagnetic 

torque 
 
To obtain the dynamic model of the electromagnetic 
torque, the excitation current from equation (8.a) is 
substituted into equation (8.c): 
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  (13) 
The continuous-time linear process give by equation 
(13) is converted into a discrete-time linear process 
and results the equation: 
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In relation (14) the one-step-delay operator is 
introduced and results: 
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3.3. Evaluation of measurements noise impact on the 

estimate 
 
In purpose to evaluate the effect of noise due to given 
measurement conditions we assume that to the inputs 
of systems (12) and (15) a normal distributed white 
noise signal  with zero mean and λ[ ]te 2 variance is 
applied instead of true signal. 
 
From equation (12) results: 
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that describe an AR(1) process. Equation (15) 
describes a MA(1) process instead. 
 
Noise effect evaluation is performed through output 
signal variance of both systems computation. In 
(Söderstrom and Stoica, 1989) the following methods 
are described to compute functions covariance: (1) 
division method; (2) Yule-Walker method (3) 
integration around the unit circle in complex plane 
and (4) state-space representation method. 
 
Because processes (15), (16) are first order processes, 
division method may be used to compute the 
variance of signals. From (16) results: 
 

 
[ ] ( )

( ) [ ]

[ ]∑
∞

=

−⋅⋅−=

=⋅=

0j

j jteab

te
qA
qCty

 (17) 

Noting that  and [ ite − ] [ ]jte −  are uncorrelated if 
ji ≠ , results: 
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where E(.) is the expectation operator. For model 
(15) the expectation operator is directly applied and 
follows: 
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ωFig. 2. The graph above: Dependencies of Rol( ) - 
the above curve - and Xol(ω) – the below curve. 
The graph below: Td(ω) dependency. 

Expressions (18) and (19) allow variance 
computation of two systems outputs depending on 
the white noise variance and brake electrical 
parameters. 
 
 

4. SIMULATION RESULTS 
 
Theoretical results presented above have been 
verified with available date in (Dănilă, 2006) for a 
given eddy currents brake operating in stationary 
regime. Brake's parameters are presented in Table 1. 
 

Table1: Eddy currents brake features. 
 

Denomination Symbol U.M. Value 
Rotor radius R m 0.1 
Ideal induced 
width li m 0.1 

Number of 
pair-poles p - 20 

Poles step τ m 0.2 
Air gap length δ m 0.001 
Magnetic 
coefficient 
with respect to 
the Od axis 

kad - 0.036 

 
Values of equivalent resistance and inductive 
reactance of the induced have been calculated, with 
the relations: 
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Fig. 3. Noise output of AR(1) process. Fig. 4. The above plot: noisy input to the torque 
observer. The plot below: torque estimate for the 
given input realization. 
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where: 
  are the phases number, number of turns per 

one phase and the winding factor for the 
equivalent phase of the induced; 

wk,w,m

rOLfi k,k,α  are the pole factor, shape coefficient of 
the progressive wave and the increasing factor of 
resistance due to the transversal boundary effect; 

n,, eOL μρ  are the induced resistivity, magnetic 
permeability to the surface of induced and 
magnetic saturation coefficient of the induced 
material. 

 
Angular frequency dependencies of parameters Rol, 
Xol and Td are depicted in Fig.2.  Parameters of two 
systems over the whole angular frequency range have 
been computed in the MatLab environment. Three 
representative values are given in Table 2. The 
sampling period is Te = 10-5s. 
 

Table 2. Systems' parameters dependencies with 
respect to angular frequency. 

 
ω a b c d 
600 0.9928 0.0006 575.10-7 701.10-8

2600 0.9727 0.0051 741.10-8 567.10-8

4600 0.9556 0.0110 347.10-8 313.10-8

 
Notice that values of parameter a are very close to 
the unit instead the values of parameter b are almost 
zero. Variance of process AR(1) strongly depends on 
both angular frequency and on the number of 
samples within a realization as shown in Table 3. 
Additionally, notice that the estimate is biased. 
 

Table 3. Mean and variance dependencies with 
respect to the angular frequency for the AR(1) 

process. 
 

ω μiq σiq σiq,calc
600 -2,0697 4,53 44,44 
2600 2,4597 106,19 93,4066 
4600 -0,2828 386,71 123,874 

 
The graphical representation of the AR(1) for a 
realization with parameters corresponding to ω = 
2600 [1/s] is depicted in Fig. 3. Computations prove 
that the measurement noise strongly influence current 
estimation especially at high values of the angular 
frequency and the variance values differ depending 
on the sample number within each realization and in 
comparison to the theoretical value. 
 
In Fig. 4 and Fig. 5 are depicted the output signal, i.e. 
the estimated torque when the deterministic signal 
and a 10% magnitude normal distributed, zero mean 
and unit variance white noise are superposed. 
 
 

5. CONCLUSIONS 
 

The analysis presented above proves that torque 
estimation based on the algorithm 10 a – c and on 
angular speed and excitation current direct 
measurements does not give a consistent estimate. 
This is prior due to the large ratio between the 
number of turns of the excitation windings and the 
equivalent phase number of turns of the induced that 
augments noise effect on the estimate. To avoid the 
multiplication effect of windings ratio on variables 
measured to the excitation winding of the brake 
torque estimation has to be performed starting from 
variables direct related to the induced. This is the 
case of speed estimation in the induction machine. A 



possible solution – to be performed in further 
researches - is to estimate the torque based on the 
flux linkage direct measurements. 
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