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Abstract: This paper is focused on usability of model predictive control (MPC) 
approach in the area of control of nonlinear systems. A self-tuning predictive controller 
is introduced and subsequently used for the control of real-time nonlinear system. The 
controller integrates on-line identification of an ARX model of a controlled system and 
a predictive control synthesis on base of the identified model. Various control 
requirements can be fulfilled by tuning controller’s parameters. The real-time testing 
has been carried out by the control of nonlinear laboratory model of interconnected 
tanks (DTS200 by Amira company). 
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1.  INTRODUCTION 
 
Most of current control algorithms are based on a 
model of a controlled system. There are two basic 
approaches of obtaining system’s model: 
mathematical-physical analysis of the system and 
black box approach. The mathematical-physical 
analysis of the system and subsequent derivation of 
the relations between system inputs and outputs 
provides general model which can be valid for a 
whole range of system’s inputs and states. On the 
other hand, there is usually a lot of unknown 
constants and relations when performing mathematic-
physical analysis. Therefore, modelling by 
mathematic-physical analysis is suitable for simple 
controlled systems with small number of parameters 
or for obtaining basic information about the system 
(range of gain, rank of suitable sample time, etc.). 
 
The black box approach to the modelling is based on 
analysis of input and output signals of the system. 
The main advantage of this approach lies in the 
possibility of usage the same identification algorithm 
for different controlled systems. Also, the knowledge 
of physical principle of controlled system and 

solution of possibly complicated set of mathematical 
equation is not required. On the other hand, model 
obtained by black box approach is generally valid 
only for signals it was calculated from. For example, 
if only low frequency changes of input signals were 
used to obtain the model, this model need not be 
usable for high frequency changes of input signals.  
 
This paper deals with black box approach to the 
identification problem where linear models of the 
controlled system are used. The identification is 
based on selection of appropriate linear model 
structure and subsequent computation of its 
parameters. The computation of parameters is usually 
based on Least Squares Method (LSM) (Bobál, 
2005). This method can be used in both off-line and 
on-line identification systems, but this paper focuses 
to on-line identification only.  
 
When the model of the controlled system is known 
the problem of selecting an appropriate control 
synthesis arises. Many successful control techniques 
have been developed in past decades. One of them is 
model predictive control (MPC) (Camacho and 
Bordons, 2004). Contrary to most other approaches, 



MPC uses not only current and previous values of 
control circuit signals but also future values of 
reference signal.  Future course of reference signal is 
known in many applications and thus can be used in 
controller synthesis. 
 
Self-tuning predictive controller encapsulates its two 
main parts: on-line identification block and model 
predictive control block. The scheme of a simple 
control circuit with self-tuning predictive controller 
is shown in Fig. 1. Note that the reference signal is 
marked as w(t), This means that the course of 
reference signal is sent to the controller, not only the 
current value w(k). 
 
 

2.  THEORETICAL BACKGROUND 
 
Self-tuning control is based on-line identification of 
controlled process and controller synthesis which 
uses results from the identification. Thus, each self-
tuning predictive controller consists of two relatively 
stand-alone parts: 

• On-line identification 
• Model predictive controller 

The on-line identification part is responsible for 
computing estimates of parameters of linear model of 
controlled system. Model predictive controller 
computes control signal on base of current model and 
control, controlled and reference signals. Scheme of 
the self-tuning predictive controller is shown in Fig. 
2. Previous value of reference signal – u(k-1) acts as 
an controller input because controller output can be 
subject of some technological limitations e.g. 
saturation. 
 
 
2.1 On-line Identification Methods 
 
Various discrete parametric models are used to 
describe dynamic behaviour of controlled systems. 
Overview of these models is given in (Ljung, 2001). 

Widely used simplification of general input-output 
model is ARX model. The ARX model for single 
input single output (SISO) systems has the following 
form: 

Fig. 1. Control circuit with Self-tuning Model 
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Then the transfer function of model of identified 
system is assumed to be in the following form: 
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Then it is possible to write an equation for computing 
the output of the system in k-th step: 
 

 ( ) ( ) ( ) (1Ty k k k n k= ⋅ − +Θ Φ )  (3) 
 
where n(k) represents the influence of an 
immeasurable disturbances, ( )kΘ the vector of the 
parameters of the controlled system model and 

( )1k −Φ  the data vector. 
 
The identification problem is formulated as a process 
of finding the ( )kΘ  vector with respect to some 
criterion. Exact values of parameters are unknown 
during the identification process and just the vector 
of parameter estimations is used. 
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The aim of the identification process is to compute 
the estimations ( )kΘ

)
 as close as possible to the 

actual parameters ( )kΘ . 
 
Recursive least squares method The recursive least 
squares method (RLSM) is based on minimization of 
sum of squares of differences between actual system 
outputs and outputs estimated on base of system 
model. If the k-th identification steps is performed 
and data corresponding to r previous system inputs 
and outputs are available, the criterion to be 
minimized can be formulated as follows: 
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Fig. 2. Self-tuning Model Predictive Controller 

 
On-line 

identification 

Model 
parameters 

w(t) 

 
 
 

Model 
predictive 
controller 

u(k-1) 

u(k) y(k) 

where y(k) is the vector of system outputs, and ( )ky)  
is the vector of system outputs estimations.  
 
The resulting equation for parameter estimations 
update is: 
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The covariance matrix C is updated in each sample 
time according to the following equation:  
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The covariance matrix C is usually initialized as a 
diagonal matrix with elements 103 on the main 
diagonal (Hang, et al.,1993),. The main diagonal of 
covariance matrix C contains dispersions of 
identified parameters and thus if the initial parameter 
estimations are known to be close to the actual 
values, the initial values of elements on the main 
diagonal are to be smaller. 
 
Recursive least squares method with exponential 
forgetting When using the least squares method, the 
influence of all pairs of identified system inputs and 
outputs to the parameters estimations is the same. 
This property can be inconvenient for example when 
identifying the system with time-varying parameters 
or non-linear system. In this case, it is better to use 
least squares method with exponential forgetting 
where the influence of newer data to the parameters 
estimations is greater then the influence of older data. 
The criterion to be minimized is in the following 
form: 
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where W is a diagonal weight matrix: 
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and the φ is a forgetting coefficient which is assumed 
to be in range 0 ϕ< ≤ . The RLSM with exponential 
forgetting can be transferred to pure RLSM by 
selecting φ=1. The lower value of φ denotes more 
rapid forgetting of older data and thus smaller 
influence of older data to resulting parameter 
estimations.  The choice of coefficient φ is individual 
and depends on the relation between identification 
sample time and speed of identified system but 
usually is taken from range 0.90,0.99 .  
 
Recursive least squares method with adaptive 
directional forgetting The exponential forgetting 
method can be further improved by adaptive 
directional forgetting (Kulhavý, 1987) which changes 
forgetting coefficient with respect to changes of input 
and output signals of identified system. Parameter 
estimations are updated using recursive equation (6) 
and covariance matrix C is updated according to 
equations (10): 

 

 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )

1

1 1 1
1

1 1
1

1 1 1

T

T

k k k k
k k

k
k

k k k

ε ξ
ϕ

ε ϕ
ξ

ξ

−

1− − − −
= − −

+

− −
= − −

= − − −

C Φ Φ C
C C

Φ C Φ

 (10) 

 
The forgetting coefficient is adapted with respect to 
courses of input and output signals according to 
following equation: 
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and the scalars ( )kυ , ( )kλ  and η  are defined in the 
following way: 
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Recommended initial values (Bobál, 2005) of 
identification variables are: φ(0)=1, λ(0)=0.001, 
υ(0)=10-6. Initial value of matrix C should be chosen 
as a diagonal matrix with elements 103 on the main 
diagonal. Parameter ρ states the dynamics of 
identification process. Reasonable values of ρ are 
from -1 which corresponds to pure least squares 
method. 
 
 
2.2 Model Predictive Controller 
 
Generally, the computation of control signal of 
model predictive controller is based on minimization 
of particular criterion (Kwon and Han, 2005). 
Usually a quadratic criterion is used (Sunan et al., 
2002).. For single input single output (SISO) systems 
the criterion can be written in general form: 
 

 ( ) ( ) (T TJ k k k= +e Q e Δu R Δu)  (13) 
 
where e is a vector of predicted control errors, Δu is a 
vector of future differences of control signal samples 
and square matrixes Q and R allows to set weighting 
of individual vector elements. Future outputs of the 
controlled system, and consequently control errors, 
are computed on base of its model. Control sequence 
is obtained by minimizing criterion (13). The 
receding horizon is usually used: only finite number 
of future values is used in criterion and only the first 
element of the obtained control sequence is applied 
to the controlled system.  
 



Proposed self-tuning predictive controller simplifies 
criterion (13) by assigning the same weight to all 
future outputs – matrix Q is diagonal and all the 
elements on the main diagonal are the same. 
Moreover, similar approach is used for differences of 
control signal samples – matrix R is diagonal and all 
the elements on the main diagonal are the same. If 
the model without transport delay is used, the 
criterion (13) can be rewritten into the following 
form: 
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Fig 4. Scheme of Amira DTS200 

 
where N is prediction horizon, Nc stands for control 
horizon and λ states ratio between weights of control 
errors and differences of control samples. It must 
hold and in case of inequality, u is taken as a 
steady for the rest of predictive horizon. 

cN N≥

 
Process of minimizing of the criterion (13) or (14) 
can be rewritten to a quadratic programming 
problem: 
 

 ( ) ( ) ( )J k k= +Tu H u p uk  (15) 
 
where u is a vector of future control signal samples 
to be computed. H and p are matrix and vector 
derived from λ and model parameters. Quadratic 
programming problem is usually solved numerically. 
This allows further constraints to be applied to vector 
u. 
 
 

3. INTERCONNECTED TANKS 
 
Proposed dual approach was verified used to control 
liquid level in the interconnected cylindrical tanks.  
 
 
3.1 Mathematical model 
 
A scheme of two interconnected tanks is presented in 
the Fig. 3. The system consists of two interconnected 
cylindrical tanks T1 and T2 and a pump P which is 
responsible for inflow to the tank T1.  The liquid level 
heights in the tanks T1 and T2 are h1 and h2 
respectively.  The inflow produced by the pump is 
qin, flow between tanks is q1 and the outflow is q2. 
The pipe between tanks and the outflow pipe are 
described by constants k1 and k2 respectively. The 

model can be described by the following system of 
nonlinear differential equations: 
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where V1 and V2 are capacities of liquid in the tanks 
T1 and T2. 
 
The system can be considered as a single input single 
output system (SISO) where the input is inflow qin 
and output is liquid level h2. This configuration was 
used in the experiments described in the following 
chapters. 
 
 
3.2 Real-time laboratory plant DTS200 
 
Control experiments were performed using real-time 
laboratory plant Amira DTS200 – Three Tank 
System. The scheme of this model is shown in Fig. 4. 
 
The plant consists of three interconnected cylindrical 
tanks, two pumps, six valves, pipes, measurement of 
liquid levels and other elements.  Valves V2 and V4 
were fully closed during the experiments, valve V1 
was fully opened and valve V5 was partially opened. 
The valve positions did not change during the 
experiments. This configuration leads to the same 
model as described in the previous chapter. The 
controlled signal (y) was the height of the liquid level 
in the middle tank (y = h3). This level was controlled 
by the control voltage of the pump P1 (u). 
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Fig 5. Static characteristics of the controlled system  
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Fig. 7. Control performance of ef controller 
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Due to the characteristics of the valves, pipes and 
pump, the system behaviour contains more 
nonlinearities than the mathematical model described 
by equations (16). This can be seen from the static 
characteristics shown in Fig. 5. 
 
 

4. CONTROL OF DTS200 PLANT 
 
Several different control algorithms were used to 
control the DTS200 plant, which was configured as 
described in previous chapter. The results of typical 
control courses are presented later in this chapter. All 
adaptive controllers used a second order discrete 
ARX model of the controlled process. No a priori 
information was used to set initial parameter 
estimations. Discrete PI controllers were also used to 
control the plant and their performance was used to 
compare advantages and disadvantages of adaptive 
MPC.  
 
The results of control courses obtained using sample 
time of T0 = 10 s are presented in this chapter. First 
adaptive controller used least square method of 
on-line identification of the model of the controlled 
system. Other parameters presented in equation (14) 
were set as follows: N=30, Nc=30 and λ=1. This 
controller is further referenced as lsm. Control 
performance of lsm controller is presented in Fig. 6. 
  
The course of reference signal was constant at 10 cm 
from the beginning to 900 s then a step change to the 
constant value of 20 cm was applied. Reference 
signal continued with decreasing ramp from 20 cm to 
10 cm in the time range from 1500 s to 2100 s and 
remained constant at 10 cm for the rest of the control 
course. The same course of the reference signal was 
used for all control experiments presented in this 
paper. 
 
An unexpected sudden decrease of plant output can 
be observed after approximately 550 s from the 
beginning of the control course. This behaviour is 
caused by air bubbles which are present in the system 
at the beginning.  A bubble had been washed out 
from a pipe system at the mentioned time and thus 
characteristics of the flow changed.  

 
The second controller was based on on-line 
identification with exponential forgetting where 
forgetting coefficient was set to φ=0.99. Parameters 
of the model predictive part of the controller were set 
as follows: N=30, Nc=30 and λ=1. This controller is 
further referenced as ef and its performance can be 
investigated from the Fig. 7. 
 
The course of the controlled signal is smoother 
compared to lsm control but the effect of washing out 
of an air bubbles can be observed too. The control 
signal of approximately 30% led to steady output of 
10 cm in the first part of the control process whilst 
control signal of almost 50% was needed to obtain 
the same output in the last part. 
 
The third controller was using on-line identification 
with adaptive directional forgetting where parameter 
ρ=-0.5. Parameters of the model predictive part of the 
controller were the same as used for previous 
controllers: N=30, Nc=30 and λ=1. This controller is 
further referenced as adf and its performance can be 
investigated from the Fig. 8. 
 
A discrete PI controller was used to be compared 
with adaptive model predictive controllers. Inputs 
and outputs, which were obtained in the first 900 s of 
ef control, were used to compute a second order ARX 
model. This model was then used to tune PI 
controller to minimize criterion (17): 

Fig. 8. Control performance adf controller 
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Fig. 6. Control performance of lsm controller 
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The reference signal was the same as used in real-
time control, sample time T0=10s was used, 
parameters a and b were set to cover whole control 
courses and weight parameter λ=1. The control law 
of the PI controller is defined by the following 
equation: 

The reference signal was the same as used in real-
time control, sample time T

  

  (18)   (18) ( ) ( ) ( ) ( )0 1u k P e k I T e k u k= ⋅ + ⋅ ⋅ + −
  
Optimal parameters of P=4.7 and I=0.05 were found. 
This controller is referenced as pi and corresponding 
control courses of the control of DTS200 plant are 
shown in Fig 9. It can be observed that the pi1 
controller was not able to cope with step change of 
reference signal from 10 cm to 20 cm. 

Optimal parameters of P=4.7 and I=0.05 were found. 
This controller is referenced as pi and corresponding 
control courses of the control of DTS200 plant are 
shown in Fig 9. It can be observed that the pi1 
controller was not able to cope with step change of 
reference signal from 10 cm to 20 cm. 
  
  

5. COMPARISON OF CONTROL 
PERFORMANCE USING SUMMING CRITERIA 
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The performances of individual controllers were 
compared not only by investigating graphs of 
performance of controller and process output signal, 
but also by mathematical criteria. Four criteria were 
used to compare control courses obtained by 
individual controllers: 

The performances of individual controllers were 
compared not only by investigating graphs of 
performance of controller and process output signal, 
but also by mathematical criteria. Four criteria were 
used to compare control courses obtained by 
individual controllers: 
  

  

0=10s was used, 
parameters a and b were set to cover whole control 
courses and weight parameter λ=1. The control law 
of the PI controller is defined by the following 
equation: 
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Values of individual criteria for lsm, ef, adf and pi 
controllers are summarised in table 1. 
  

Table 1. Values of criteria for the control courses of 
lsm, ef, adf and pi controllers 

Fig. 9. Control performance pi controller 
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controller Se2 Sea Su2 Sua
lsm 4.44 0.94 16.18 2.89 
ef 5.63 1.04 9.28 2.19 
adf 3.87 0.87 16.82 2.33 
pi 5.36 1.29 16.68 1.22 
 
Criteria Se2 and Sea are based on control error. And 
represent accuracy of control process. Criteria Su2 and 
Sua are based on changes control signal and represent 
demands for actuators. Values of a and b in (19) were 
selected to cover whole control process. 
 
 

6. CONCLUSIONS 
 
Model predictive adaptive controller was proposed 
and verified by control of nonlinear time varying 
system. The controller is based on self-tuning 
approach and several methods of on-line 
identification were discussed. The DTS200 plant was 
used to verify and compare different setting of the 
controller. Parameters of this plant are not constant in 
time especially due to air bubbles, which are present 
in the tubes and valves. Thus comparison of 
individual control courses has to be performed with 
respect to these changes. Nevertheless, the accuracy 
of all adaptive MPC control process was significantly 
better compared to “optimal” PI controller.  
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