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Abstract: The paper presents a method based on „the matrix with partial derivatives of the 
state vector” (Mpdx) for numerical modelling and simulation of processes with distributed 
parameters, using the Taylor series. This method can also be used for modelling and 
numerical simulation of pollutants dispertion.  
Keywords: partial derivative equation, state variables, Taylor series, numerical 
integration, pollutants . 

 
 
 

 
1. INTRODUCTION 

 
 
It is known that the usual analytical of linear 
processes with distributed parameters can be 
expresses using equations or equation systems with 
linear partial derivatives. The equation with linear 
partial derivatives (pde), to which  this paper refers to 
is presented in the below: 
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All coefficients (...) are considered to be constant and 
φ(t,p,q,r), and c(t,p,q,r) and fulfill the continuity 
 conditions in the Cauchy sense. The independent 

variables (t), (p),(q), and (r) could represent the time 
(t), respectively the spatial abscise  (p), (q), and (r) in 
 Cartesian system (Omatu., and Seinfeld, 1989;  
Farlow, 1982; Bellomo, and Preziosi, 1995). 
The initial conditions (IC) are considered to be know 
and for boundary conditios (BC) and  final condition  
(FC), as the case may be,  other explanations could 
be added. 
 
2. STATE VARIABLES, INITIAL  CONDITIONS, 

BOUNDARY CONDITIONS AND FINAL 
CONDITIONS 

 
 

Introducing the notation: 
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for the state variables and T=0,1,2,…, P=0,1,2,…, 
Q=0,1,2…., R=0,1,2,….., equation (1) can be  
rewritten as follow: 
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The state vector values for initial conditions, 
boundary conditions and final conditions are 
presented in Tabel 1. 

Tabel 1. 
xIC xBC xFC
 
 

x(t0,p,q,r) 
 

 
x(t,p0,q,r); x(t,p,q0,r) 
x(t,pf,q,r); x(t,p,qf,r) 

 
 

x(tf,p,q,r) 

 
 

3. THE COMPLETE  METHOD OF THE 
TAYLOR SERIES FOR THE 

APPROXIMATION OF THE VECTOR (xk). 
THE DEFINITION OF THE MATRIX  Mpdx 

 
The method is based on the iterative use of the 
Taylor series, included in a table structure. 
For the case presented here, having the temporal 
variable (t) and three spatial variables (p), (q), and 
(r), the table structure  will be denoted with (Mpdx) 
and it will be called „the matrix with partial 
derivatives of the state vector” (Colosi, 2006) . The 
table structure  has the form below: 
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Under more explicit x, xPQR, xT, and xTPQR  terms the 
matrix become: 
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Notations used: 
 
- x(nx1) is the state vector corresponding to the 
variable with respect to which the numerical 

integration was made. Next, we consider this variable 
to be the (t) time variable; 
- xPQR  (nxM) is made of a number of (M) state 
vectors which have been multiplied and partially 
derived  with respect to (p), (q) and (r); 
- xT(Nx1) is a state vector containing the partial 
derivatives of the state x vector elements in respect to 
time; 
-  xTPQR(NxM) is a matrix which was derived  from 
the xPQR(nxM) , whose elements are partial 
derivatives with respect to time (p), (q), and (r); 
  - n is the order of the equation as well as the number 
of the state variables; 
  - N is the partial derivative number of the state 
vector in respect to time. Usually (N≥n). 
The defined  Mpdx[(n+N)x(1+M)]  matrix will be 
calculated using the iterative calculus. The 
calculation includes different stages according to 
each (Δt) integration step, as follows: 
 
3.1 The Stage of the Rregressive Sequence (k-1). 
 
Consists in the calculation of Mpdx,k-1 (matrix of the 
state vector partial derivatives). 
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Which could also correspond to the start of the 
calculation, i.e. t0=tk-1. Knowing  that xk-1 = x(tk-1,p,q, 
r), we can calculate the elements of the matrix by 
means of partial and multiple derivatives. 
 
                    xPQR,k-1 = xPQR(tk-1,p,q,r)                   (7) 

 
 
3.2 The Stage of the Current Sequence (k). 
 
 In this stage, the vector (xk) and the matrix (xPQR,k) 
are approximated by (trunk)  Taylor series . Formally 
they are representd by: 
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thus, showing that for the two (k-1) and (k) 
sequences we have the (tk-1) and tk=tk-1+Δt, where the 
(Δt) integration step is considered to be short enough.  
At the end of this sequence we operate the change 
from the (k) sequence to (k-1) sequence and we start 
the stage of (k-1) regressive sequence.  
 
 
 



4. EXAMPLE FOR  A DISPERSION OF 
INDUSTRIAL POLLUTANTS  

 
To check the above mentioned modelling and 
numerical simulation method the following cases are 
used. 
 
4.1 The Analytical Solution. 

 
The analytical solution necessary for the start of the 
analytical calculations and for  the cumulative 
relative error  in percent (crep) is the following: 
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4.2 The Coefficients of  the Analytical Solution  
 
They are:  
A=1; 
σt=0.5; σp=0.5; σq=0.5; σr=0.8  
a0000=1; a1000=T1+T2; a0100=P1+P2; a0010=Q1+Q2; 
a0001=R1+R2;a2000=T1*T2;a1100=(T1+T2)*(P1+P2); 
a1010=(T1+T2)*(Q1+Q2);a1001=(T1+T2)*(R1+R2); 
a0200=P1*P2;a0110=(P1+P2)*(Q1+Q2); 
a0101=(P1+P2)*(R1+R2);a0020=Q1*Q2;                 (11) 
a0011=(Q1+Q2)*(R1+R2); a0002=R1*R2; 
and  
T1=0.1; T2=0.2; P1=0.15; P2=0.25; Q1=0.15; 
Q2=0.25; R1=0.04; R2=0.06; 
 
4.3  Cases Considered. 
 
We consider three usual cases described by the 
following values. 
 
First case: 
t0 = 0; tf = 1;  t=0:0.05…1; rg =0; r0 =0; rf  =0.5 ; 
r=0:0.05…0.5; q0=0;qf = 0 ; q=qf; p0=0; pf = 0;  p = pf  
(the results are represented  in figure 1.) 
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Fig. 1. The variation of c[μg/m3] for 
p=0[km],q=0[km], r=0-0.5[km] and t=0-1[h]. 
 
Second case: 
t0 = 0; tf = 1;  t=0:0.05…1; q0 =0; qf  =0; q= qf; 
p0 = 0 ; pf=2; p=0:0.1…2; pg = 0; r0=0; rf = 0;r = rf 
(the results are represented  in figure 2.) 
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Fig. 2. The variation of c[μg/m3] for 
q=0[km],r=0[km], p=0-2[km] and t=0-1[h]. 
 
Third case: 
t0 = 0; tf = 1;  t=0:0.05…1; p0 =0; pf  =0 ;p=pf; qg = 0;  
q0 = 0 ; qf=2; q=0:0.1…2; r0=0; rf = 0.1;  r = rf ;(the 
results are represented  in figure 3.) 
The time and space’s constants are: T1=0.1;  T2=0.2;  
P1=0.15; P2=0.25; Q1=0.15;Q2=0.25; R1=0.04; 
R2=0.06 ; ku=1; u=1 for all the cases studied. 
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Fig. 3. The variation of c[μg/m3] for 
p=0[km],r=0[km], q=0-2[km] and t=0-1[h]. 
 
 
 
4.4 Value of n,N,M. 
 
 Values for the n, N and M are: n=2; N=3 ; M=6. 
 
4.5 The Cumulative Relative Error Percents. 
 
The accuracy of the numerical integration was 
approximated through the cumulative relative error 
percents defined by: 
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where: 

0..00..0 xcx AN −=Δ  (difference between 
numerical and analytical solution in absolute  
values); 



ANAN cx =0..0 corresponds to the analytical value 

adding that  is the iterative sum up of calculus 

sequences from t

∑
ft

t0

)(

0 to tf . The integration step is 0.001 
and the cumulative relative error percents is less 
then  0.02 percents . The following tabel shows 
some values of crepc. 
 

Table 2 
 

t 0.2 0.4 0.6 0.8 1 
c(t,p) 0.046 0.142 0.317 0.512 0.600 
crepc 5*10-5 5*10-5 5*10- 5 1*10-4 1*10-4

c(t,q) 0.049 0.152 0.339 0.547 0.641 
crepc 5*10-5 5*10-5 5*10- 5 1*10-4 1*10-4

c(t,r) 0.052 0.161 0.357 0.577 0.676 
crepc 5*10-5 5*10-5 5*10- 5 1*10-4 1*10-4

 
5. CONCLUSIONS 

 
This paper presents a possible numerical modelling 
and simulation variant with second order partial 
derivative  equations, which depend on four 
independent variable . One of them (t), represents 
time and the other  (p), (q), and (r), are usually 
considered spatial Cartesian coordinates. 
The paper defines and uses the „ matrix with partial 
derivatives of state vector”  (Mpdx), associated to the 
Taylor series, dedicated to modelling and numerical 
simulation of a large category of partial differential 
equations. 
For the  proposed variant we operate with time 
constants  T1 and T2 and  length constants P1, P2 ,Q1 
,Q2, R1 , and R2 . These constants are usually used in  
thermo-energetical and chemical engineering. 
Choosing  those  constants conveniently we can 
obtain a lot of geometry for dispersion pollutants.  
In this paper three examples which can approximate 
the following situations are considered: 
- the source of the pollutants is a power plant stack; 
- the origin of  the Cartesian system is on the top of   
stack, which is the source of pollutants; 
-the pollutants dispersion  is considered during  1 
hour and: 
- on 0.1 km upper stack (p=0; q=0; r=0-0.5) ( Fig. 1). 
-on 2km horizontal (p=0-2km, q=0km and r=0)  

(Fig. 2); 
- on  2km horizontal (q=0-2km, p=0km and r=0km)  
( Fig. 3); 
For the validation of the method  and  to determine 
the performance of numerical integration the 
constants in (11) have been used . 
Table 2 shows a cumulative relative error of c  (crep 
c) equal with 5*10-5-10-4 percents, which 
demonstrates the numerical integration performance 
and validity. 
The commonly used method of modelling air 
pollutant dispersion is represented by a differential 
equation, which expresses the rate of change of 
pollutant concentration in terms of average wind 

speed and turbulent diffusion. Mathematically, this 
process is derived from the mass conservation 
principle, (Mastoraks, 2004). The basic diffusion 
equation used in air quality modelling is given by: 
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where: 
- C represents the concentration in atmospheric 
pollution (μg /m3); 
- Dx,Dy, and Dz represent the diffusion coefficients 
(m2/s); 
- u  represents the wind speed (m/s); 
-w represents the mass of species due to chemical 
reactions(kg/m3s); 
Equation (13) can be obtained from (1) by setting the 
coefficients to  particular values. 
This preliminary approximated work for pollutants 
dispersion can be completed with details regarding 
meteorological and terrain factors. 
Also, the work will be used for numerical modelling 
and simulation control system in reduced pollutants 
industrial processes. 
The accuracy of the numerical integration that was 
approximated through the (crepc), can be controlled 
and improved if  N and M are chosen accordingly. 
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