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Abstract: This work treats the oscillation aspect of the hybrid systems using Poincaré 
maps.  I present the framework for Poincaré map and the main properties after that I 
define them for hybrid systems. I present a way to construct the Poincaré map for hybrid 
systems and properties of it for this kind of systems. I give steps for the limit cycle in a 
hybrid system. © Copyright 
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1. INTRODUCTION 

 
Many technical aspects from real life are modelled 
by a special class of systems, which are mixture of 
continuous and discrete states; in many cases the 
continuous states chancing by a discrete law.  
 
Such systems have come to be known as hybrid 
systems (van der Schaft and Schumacher, 2000; 
Liberzon, 2003) or piecewise smooth dynamical 
systems (di Bernardo et al., 2003). The examples can 
be drawn from a wide range of application areas, 
including process control (Lennartson et al., 1996), 
constrained mechanical systems (Brogliato, 1999), 
robotics (Spong and Vidyasagar, 1989; Piiroinen, 
2002), power systems (Hiskens, 2004), and power 
electronics (Rajaraman et al., 1996; Yuan et al., 
1998). In fact, any physical device that exhibits 
hysteresis, or control loop with anti-wind-up limits 
(Goodwin et al., 2001), is effectively a hybrid 
system. More details about hybrid systems and many 
references can be found in (DeCarlo et al., 2000). 
One of the characteristic of the hybrid systems is that 
there are no a single model for a hybrid systems, and 
we have many models for different situations and 
problems. Another aspect is the presence of the 
algorithmic filed in hybrid systems, aspect which 
gives efficiency. There are many algorithms, see 
(Attia et al., 2005), where there are different 
references. You can see the link between Poincaré 
map and algorithms in (Asarin et al., 2001). 

2. PRELIMINARIES 
 

Some notions and techniques need to be known here, 
and they come from the dynamical field like the flow. 
Also, the Poincaré map notion is presented and 
methods linked with it. 
 
 
2.1 Trajectory sensitivities 
 
The dynamical behaviour of continuous-time 
systems, such as power systems, can be expressed in 
terms of the flow, 
 

x(t) = φ(x0; t) 
 
which describes the evolution of dynamic states x 
over time, starting from the initial condition x(t0) = 
x0. In general, φ cannot be expressed in closed form, 
and so must be obtained by numerical integration, see 
(Shampine, 1994). The flow may well describe 
behaviour that involves interactions between 
continuous dynamics and discrete events, as you can 
see (Hiskens, 2004).  
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Algorithms for locating limit cycles require the 
sensitivity of a trajectory (flow) to perturbations in 
initial conditions, as in (Stoer and Bulirsch, 1993). 
To obtain the sensitivity of the flow Á to initial 
conditions x0, the Taylor series expansion of (1) is 
formed. Neglecting higher order terms gives 
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where Φ is the sensitivity transition matrix, or 
trajectory sensitivities, associated with the x flow, see 
(Frank, 1978). The equation (2) describes the change 
Δx(t) in a trajectory, at time t along the trajectory, for 
a given (small) change in initial conditions Δx0. 
Space limitations preclude the inclusion of the 
variational equations describing the evolution of Φ. 
Full details are given in (Hiskens and Pai, 2000). It 
should be emphasized that Φ does not require 
smoothness of the underlying flow φ. Trajectory 
sensitivities are well defined for the non-smooth 
and/or discontinuous flows. 
 
The computational burden of generating Φ is 
minimal. It is shown in (Li et al., 2000).) that when 
an implicit numerical integration technique such as 
trapezoidal integration is used, trajectory sensitivities 
can be obtained as a by-product of computing the 
underlying trajectory. 
 
 
2.2 Poincaré Map 
 
Limit cycles and their stability can be determined 
using Poincaré maps, as it can be seen in (Seydel, 
1994; Parker and Chua, 1989). The notion of 
Poincaré map comes from dynamical systems, but it 
can be extended to hybrid dynamical systems. 
 
This Poincaré map notion uses the flow notion. A 
Poincaré map effectively samples the flow of a 
periodic system once every period. The concept is 
illustrated in Figure 1. If the limit cycle is stable, 
oscillations approach the limit cycle over time. The 
samples provided by the corresponding Poincaré map 
approach a fixed point. An unstable limit cycle 
results in divergent oscillations. For such a case the 
samples of the Poincaré map diverge. 
 
To define a Poincaré map, consider the limit cycle Γ 
shown in Figure 1. Let Σ be a hyperplane transversal 
to Γ and defined by 
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where x~  is a point anchoring Σ, and σ is a vector 
normal to Σ. The trajectory emanating from x* will 
again encounter Σ at x* after T seconds, where T is 
the minimum period of the limit cycle. Due to the 
continuity of the flow φ with respect to initial 
conditions, trajectories starting on Σ in a 
neighbourhood of x* will, in approximately T 
seconds, intersect Σ in the vicinity of x*. Hence φ 
andΣ define the Poincaré map 
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Fig. 1 Poincaré map and limit cycles for dynamical 

systems. We can see the both kind of behavior for 
the flow.  

 
where τr(xk) ≈ T is the time taken for the trajectory to 
return to Σ. Another name for Poincaré map is first 
return map, and it is clear why. Complete details can 
be found in (Seydel, 1994; Parker and Chua, 1989). 
 
 
2.3 Shooting method 
 
From (4), it can be seen that a point x* on the limit 
cycle can be located by using Newton’s method to 
solve the nonlinear algebraic equations 
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We can define a iterative process for solve this 
problem. The solution process therefore has the 
iterative form 
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It is shown in (Donde and Hiskens, 2006) that the 
Jacobian DFl  is given by 
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where f is given by (2) and I is the n-dimensional 
identity matrix. Notice that because the flow φ and 
associated sensitivities Φ are well defined for non-
smooth systems, solution of (5) is also well defined 
for such systems. 
 
It can be seen from (5) that evaluation of Fl(xi) at 
each iteration requires numerical integration. This 
process is therefore referred to as a shooting method 
as it can be seen in (Stoer and Bulirsch, 1993). 
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2.4 Limit cycle stability 
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Stability of the Poincaré map (4) is determined by 
linearizing P at the fixed point x*, i.e., 
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From the definition of P(x) given by (4), it follows 
that 
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where τr(x*) = T. The matrix Φ(x*, T) is exactly the 
trajectory sensitivity matrix after one period of the 
limit cycle, i.e., starting from x* and returning to x*. 
This matrix is called the monodromy matrix. It is 
shown in (Parker and Chua, 1989) that for an 
autonomous system, one eigenvalue of Φ(x*,T) is 
always 1, and the corresponding eigenvector lies 
along *x

f . The remaining eigenvalues of Φ(x*, T) 
coincide with the eigenvalues of DP(x*), and they are 
known as the characteristic (or Floquet) multipliers 
mi of the periodic solution. The characteristic 
multipliers are independent of the choice of cross-
section Σ. 
 
Because the characteristic multipliers mi are the 
eigenvalues of the linear map DP(x*), they describe 
the (local) stability of the Poincaré map P(xk). Hence 
the (local) stability of the periodic solution is 
determined by: 
• All mi lie within the unit circle, i.e., im  < 1; ∀i. 

The map is stable, so the periodic solution is 
stable. 

• Some mi lie outside the unit circle. The periodic 
solution is unstable. 

 
Interestingly, there exists a particular cross-section 
Σ*, such that 
 

DP(x*)ζ = Φ(x*,T)ζ 
 

where ζ ∈ Σ*. This cross-section Σ* is the hyperplane 
spanned by the n - 1 eigenvectors of Φ(x*, T) that are 
not aligned with f|x. Therefore the vector σ* that is 
normal to Σ* is the left eigenvector of Φ(x*, T) 
corresponding to the eigenvalue 1. The hyperplane Σ* 
is invariant under Φ(x*, T), i.e., Φ(x*, T) maps vectors 
ζ ∈ Σ*  back into Σ*. 
 
 

3. POINCARÉ MAPS IN HYBRYD SYSTEMS 
 

The hybrid systems field has an big increase and 
many aspects can be treated by different approaches 
for solving problems from real life in many fields. 

 
Fig. 2 The periodic solution γ of a second order 

hybrid system. 
 
3.1 Switch sets 
 
Let Q be a discrete lot, Q = {1, 2, 3, …, nQ} The 
function s:H(=Rn × Q) → Q by s(x, i) = j, where x ∈ 
Rn and i,j ∈ Q, means that we have a switch of 
discrete state from state i to state j. To put together 
all continuous states which are involved in this 
change, we define switch set. One image of the 
switch sets is in (Rubensson and Lennartson, 2000). 
In (Branicky, 1995) the notion of switch set is 
replaced by switch surface.  
 
The switch set Si, j is defined by  
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For each i∈Q, the vector field is 
assumed to be locally Lipschitz continuous.  
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The switch set can be given by switch  functions. So, 
if a switch function is a map si, j: Rn → Rn, then the 
switch set can be defined as Si, j = {x ⏐ si, j(x) = 0}. 
Generally, the switch functions represent hyperplanes 
in the extended state space, i.e. 

jijiji DxCxs ,,, )( += . Let assume that we have for 
our system m switch sets. 
 
 
3.2 Limit cycles in hybrid systems 
 
The study of the limit cycles in the hybrid systems is 
a natural aspect of the oscillation behavior and there 
are different approaches. In (Gonçalves, 2003) is 
presented a technique by calculation solutions of 
differential equations and imposing the condition for 
limit cycle φ. For every switch set Si+1 we have 
φ( ) = ∈ S**

2
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Here represents the time when the trajectory of the 
system  intersects  one   switch   set  and   change  his 
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An image of the limit cycle for a linear system in R2 
is presented in (Gonçalves, 2003) for ii BxAx +=& : 
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The initial condition is φ(1.24) = (1 0.87)/. The 
switching rule with memory that uses system 1 until 
the trajectory intersects the switching surface S1, and 
then uses system 2 until the trajectory intersects the 
switching surface 2, and so on. The switching surface 
are given by C1,2 = (-1 1), D1,2 = -1, C2,1 = (1 0), D2,1 
= -1. After solving the conditions, the results are: 

= 1.24,   = 1.35,     = = (1 0.87)*
1t

*
2t
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*
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/ with the image in Figure 2. 
 
Local stability of limit cycles can be checked by 
linearizing the Poincaré map, but global stability or 
characterization of stability in regions around limit 
cycles cannot be checked or found. The Lyapunov 
functions cannot be constructed in the state space to 
prove stability of limit cycles. Gonçalves (2003) 
presents the impact map notion, for that he 
parameterize the switching surfaces using the 
orthogonal complement, and gives his role in the 
locally stable limit cycle. In (Gonçalves et al., 2003) 
he constructs a new notion, namely Lyapunov 
functions on switching surfaces, for study limit 
cycles. 
 
 
3.3 Transversal section for Poincaré map 
 
Construction of transversal set is made in the next 
way: the cross section Σ ⊂ Rn, of dimension n-1, 
need not to be planar, but must be chosen so that the 
flow is everywhere transverse to it, that is f(x)⋅n(x)≠0 
for all x∈Σ, where n(x) is the unit normal to Σ at x. 
We can take the  tangent on  flow in  the intersection 
point between flow and switch set and after the 
normal on the tangent, as it can see in Figure 3. 
 
For the hybrid systems we have to take for every 
switch set a surface which is perpendicularly on the 
tangent  surface  in  the  point   where   the  trajectory 

 
 Fig. 3 We take the normal on the tangent in

intersection between switch set and the flow.  

 

ig. 4 For every intersection p nstruct the 
transversal hyperplane taking the tangent to flow in 

 
in y 

e obtain the Poincaré map for the hybrid system. If 

f one fix point for the 
ybrid Poincaré map reflects the stability of the limit 

 function between 
very two pair of transversal sets and after we 

tandard Poincaré map we have 
:U→Σ , P(q)=φ (q) for q∈U, where U⊆Σ is a 

d to 
stablish the limit cycle into a hybrid system. 

lculate 
oints on the transversal sets and the iterative process 

is well-defined by the point xi on Σi. The compose 
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that point and after constructing the normal on it. 

tersects the switch set, as in Figure 4. In this wa
w
p∈γ, and Σ, with p∈Σ, is a cross section than if φ is 
transverse to Σ, we have Tx(Σ) the tangent space in x. 
We can considerate a base on tangent space, which is 
a vector space, and after apply representations in 
tangent space using the base of it. In the next, we can 
apply a map between the two tangent spaces and uses 
the representation in bases.  
 
Theorem 1. The stability o
h
cycle γ  for the compose flow φ.  
 
Proof: We can considerate one
e
compose that functions. For three transversal sets, let 
say Σi, Σj and Σk, we have two function between 
them, let say it Pij, respectively Pjk, and the condition 
Pij(x0) must be in an open set included in Σj for x0 ∈ 
Σi. We’ll have (Pjk ο Pij)(x0) belongs to Σk, and so Pjk 
ο Pij can be seen as a map from Σi to Σk. So, for P12, 
P23, …, Pn-1 n and Pn1 if we have (Pn1 ο Pn-1 n ο …ο 
P23 ο P12)(p) = p ∈ Σ1 then we have a limit cycle for 
the hybrid system. 
 
In the theory of s
P t

neighborhood of p. In the hybrid case P= Pn1 ο Pn-1 n 
ο …ο P23 ο P12. Let consider the limit cycle γ as 
composed from γ1, γ2, … , γn, where every γi 
corresponding to a part of the composed map, namely 
Pi..i+1. We consider Pi..i+1(qi) = φi(qi), where qi∈Ui⊆Σi. 
But γI is a part of the limit cycle γ and γI 
corresponding to φi. In this way we have a direct 
corresponding between P and φ, φ=φn ο …ο φ1.  
 
Theorem 2. The shooting method can be applie

γ 

Σi
Si

e
 
Proof: Indeed, at every step we have to ca
p



(12)

flow φ is determined by corresponding flows φi 
between switch sets. The (5) now becomes: 
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where x* ∈ Σ1. 
 
 

4. CONCLUSIONS 
 

he dynamical behavior of a Poincaré map for hybrid 
systems is a too ycles. I present 
the framework for Poincaré map and the main 
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