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Abstract: The message-passing architectures consist of multiple computers 

interconnected through an interconnection network, communicating one with other by 

send-receive message functions and synchronized by barrier functions. At the moment 

there exist many libraries that provide a set of standardized functions for parallel 

programming like Message Passing Interface (MPI). MPI library allow the 

implementation of parallel algorithms on message-passing architectures. In this paper we 

propose two parallel sorting algorithms designed for message-passing architectures and 

implemented using MPI library: parallel Insertionsort and parallel Quicksort algorithms. 

We evaluate the performance of the proposed algorithms on three types of message 

passing architectures: linear array, two-dimensional mesh and hypercube. We evaluate 

the sorting time, the interprocesses communication time and the total processing time for 

each topology and we analyze the efficiency of the two parallel sorting algorithms related 

to the parallel system topology. 
 

Keywords: message passing architecture, parallel programming, parallel algorithms, 

sorting algorithms 
 

 

 

 

1. INTRODUCTION 
 

The key issue of parallel architectures is to exploit 

the potential of parallelism in real applications in 

order to minimize the processing time. Once the 

parallel systems have been developed, the scientists 

have to design efficient parallel algorithms usually 

derived from the correspondent sequential 

algorithms. A parallel program consists (generally) of 

more processes that synchronize and communicate 

between each other. A very important issue is to 

obtain an optimum matching degree between the 

parallel algorithm and the topology of the parallel 

machine (Culler et Singh 1999). Moreover, if the real 

application doesn’t contains a sufficient potential of 

parallelism, then the parallel derived algorithm will 

be inefficient and very expensive at the execution 

time. There are two classes of architectures that 

exploit coarse-grain parallelism: Shared-Memory 

Architectures and Message Passing Architectures. 

The former category includes the multiprocessor 

systems in which the processes synchronize and 

communicate through the shared variables stored on 

the common memory (fig. 1). The second class 

includes the multicomputer systems based on static 

or dynamic interconnection networks and 

communicating by sending data packets from the 

source node to the destination node through the 

network (fig. 2). The multicomputer systems can be 

emulated on local area networks (LANs) using MPI 

library. The communication process is implemented 

with send-receive message functions. Using a LAN 

the MPI environment can emulate any type of 

interconnection network topology (linear array, 

meshes, hypercube etc.). Based on MPI library we 

implemented and evaluated the parallel Insertionsort 

and parallel Quicksort algorithms on three types of 

message-passing architectures: linear arrays, two-

dimensional mesh, hypercube. 
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Fig. 1. Shared-Memory Architecture. 
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Fig. 2. Message-Passing architecture. 

 

 

2. SIMULATED PARALLEL ARCHITECTURES 

 

 

2.1. Linear array network 

 

The linear array is a one-dimensional network in 

which N-nodes (processors) are connected by N-1 

links in a line (fig. 3). Internal nodes have degree 2, 

and the terminal nodes have degree 1. The diameter 

is N-1, which is rather long for large N. The bisection 

is b=1. Linear arrays have the simplest connection 

topology, the structure is not symmetric and poses 

communication inefficiency when N becomes very 

large. This is because any data entering the network 

from one end must pass through all nodes in order to 

reach the other end of the network (Culler et Singh, 

1999). However the linear array allows concurrent 

use of different sections (channels) of the structure 

by different source and destination pairs. 
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Fig. 3. Linear array network. 

 

 
2.2. Two-dimensional mesh network 

 

A two-dimensional mesh consists of k1×k2 nodes, 

where ki≥2 denotes the number of nodes along 

dimension i. Figure 4 represents the two-dimensional 

mesh used in our experiments (k1=4 and k2=2). In 

this mesh network each node is connected to its 

north, south, east and west neighbors. In general, a 

node at row i and column j is connected to the nodes 

at locations (i-1, j), (i+1,j), (i, j-1) and (i, j+1). 

Therefore, the node degree is 4 (excepting the node 

on the edges and vertices) and the diameter of the 

mesh network is equal to the distance between nodes 

at opposite corners: (k1-1)+(k2-1). The routing of data 

through a mesh network can be accomplished in a 

straightforward manner (Lee et al, 2001). The 

following simple routing algorithms routes a packet 

from source S to destination D in a n×m mesh 

network: 

 

1. Compute the row distance R as: 

   mSmDR // −=  

2. Compute the column distance C as: 

)(mod)(mod nSnDC −=  

3. Add the values R and C to the packet header 

at the source nod 

4. Starting from the source node, send a packet 

for R rows and then C columns 

 

The values R and C determine the number of rows 

and columns that the packet needs to travel. The sign 

of the values R and C determines the direction of the 

message at each node. When R (C) is positive, the 

packet travels downward (right); otherwise, the 

packet travels upward (left). Each time that the 

packet travels from one node to the adjacent node 

downward, the value R is decremented by 1, and 

when it travels upward, R is incremented by 1. Once 

R becomes 0, the packet starts traveling in the 

horizontal direction. Each time that the packet travels 

from one node to the adjacent node in the right 

dimension, the value C is decremented by 1, and 

when it travels in the left direction, C is incremented 

by 1. When C becomes 0, the packet has arrived at 

the destination. 

 

 

2.3.  Hypercube network 

 

A n-cube network, also called hypercube, consists of 
nN 2=  nodes; n is called the dimension of the 

hypercube network. In a n-cube the nodes are 

considered the corners of an n-dimensional cube and 

the network connects each node to its n neighbors. 

The node degree of n-cube network is n and so does 

the network diameter. In fact, the node degree 

increases linearly with respect to the network 

dimension, making it difficult to consider the 

hypercube a scalable architecture. In a n-cube, 

individual nodes are uniquely identified by n-bit 

addresses ranging from 0 to N-1. Given a node with 

binary address d, this node is connected to all nodes 

whose binary addresses differ from d in exactly 1 bit. 

For example, in a 3-cube, in which there are 8 nodes, 

node 7 (address 111) is connected to node 6 (110), 5 

(101) and 3 (011). Figure 5 demonstrates all the 

connections between the nodes. As can be seen in a 

3-cube, two nodes are directly connected if their 

binary addresses differ by 1 bit. This method of 

connection is used to control the routing of data 

through the network in a simple manner. The 

following routing algorithm routes a packet from its 

source )...( 01 ssS n−
=  to destination )...( 01 ddD n−

= : 

1. Tag 01...ttDST n−
=⊕=  is added to the 

packet header at the source node (⊕ denotes 

XOR function). 

2. If  0≠it  for some 10 −≤≤ ni , then use 



the i-th dimension link to send the packet to 

a new node with the same address as the 

current node except its i-th bit, and change ti 

to 0 in the packet header. 

3. Repeat step 2 until 0=it  for all 

10 −≤≤ ni  
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Fig. 4. Two-dimensional mesh network. 
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Fig. 5. 3-cube network. 

 

 

3. THE PARALLEL INSERTION SORTING 

ALGORITHM 

 

 

The parallel version of the algorithm consists of the 

following steps: 

 

1. splitting the unsorted string in substrings of 

N/p elements (N – string dimension; p – 

number of processors); 

2. sending the substrings from the master 

processor to others. Each processor will 

receive a substring to be sorted; 

3. sorting the substrings by the insertion 

sorting method in all the processors. This 

will be done in parallel by all the processors 

4. collecting the sorted substrings. This will be 

done according to the tree presented in 

figure 6. 

5. repeat steps 3 and 4 until all the substrings 

will be collected in P0. 

6. final sorting in P0 

 

The sequential sorting algorithm complexity is 

O(N
2
). According to the implementation model 

presented in figure 7, the complexity of the parallel 

algorithm is: 
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Fig. 6. Parallel sorting algorithm 

 

 

4. THE PARALLEL QUICKSORT ALGORITHM 

 

The sequential Quicksort algorithm is based on 

divide and conquer method. This method consists of 

two steps: 

1. Divide the problem into smaller 

independent subproblems and solve these 

subproblems individually; 

2. Conquer: solve the main problem by 

combining the solutions of the individual 

subproblems. 

 

For the Quicksort algorithm the two steps consist in: 

1. Divide: Partition function splits the string 

into two nonempty substrings (the elements 

positioned in the lower substring are all 

smaller than the elements of the upper 

substring); 

2. Conquer: substrings are sorted by recursive 

calls to Quicksort function. 

 

Our parallel version of the algorithm follows two 

phases: 

 

Phase 1 – Divide and Conquer (figure 8a): 

1. Divide: Find the pivot m (partition function 

partitions the string into two nonempty 

substrings). Starting from the root of the 

tree, on each level, the nodes implied in 

sorting will send the upper substring to the 

node placed on the next level. That is, on the 

last level, each processor will have a 

substring to be sorted; 

2. Conquer: The substrings are sorted in 

parallel by recursive calls to sequential 

Quicksort algorithm. In this step all the 

processors runs the sequential algorithm. 

 



Phase 2 – Collecting the sorted substrings: 

In this phase every node store his sorted 

substring. Using a similar tree the P0 node 

will collect the sorted substrings from the 

others nodes in four steps. Therefore, 

through the concatenation of all these 

substrings, the node P0 obtains the sorted 

string on the last level. This will be done 

according to the tree presented in figure 8b. 

 

Parallel_Quicksort (begin, limit, level) 

{ 

if (level>1){ 

//The processors implied in sorting find the pivot m 

 m=Seq_Quicksort_Partition(begin,limit); 

//Sending the upper substring to the others 

processors 

 m=Send_Upper_SubString(m,limit,level); 
//Every processor will find, in function of current 

level, the tree //branch on which it works 

 left=Find_Branch(level); 

  if(left==1){ 

 Parallel_Quicksort(begin,m,level/2); 

  } 

  else if(left==0){ 

 Parallel_Quicksort(m+1,limit,level/2); 

  }} 

else{  //level=1, call Sequential_Quicksort 

 Sequential_Quicksort(begin,limit); 

}} 

Fig. 7. Parallel Quicksort algorithm. 

 

The complexity of the sequential Quicksort algorithm 

is O(n×log(n)). For the parallel quicksort algorithm, 

the covering of the sorting tree nodes can be made in 

parallel unlike in the sequential case, when the single 

processor covers only one node at a time. For the 

parallel version the complexity becomes 

O(n×log(n)/log(p)), where p is number of processors. 
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Fig. 8a. Parallel Quicksort algorithm – Phase 1. 
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Fig. 8b. Parallel Quicksort algorithm – Phase 2. 

5. EXPERIMENTAL RESULTS 

 

In this section we evaluate the performances of the 

parallel Insertion sorting and parallel Quicksort 

algorithms on three parallel topologies: linear array, 

two-dimensional mesh and hypercube (3-cube). 

These topologies were emulated using MPI library on 

a LAN with 8 Intel Pentium IV (2,4GHz) / 256 MB 

RAM computers connected by a 100Mbs switch. The 

input data (the unsorted string) were obtained from 

an input file consisting of random values. Therefore, 

we had the same input data in all simulated 

architectures. Table 1 presents data input 

characteristics according to the simulated parallel 

topologies for the two algorithms. 

 

Table 1. The input parameters and the simulated 

configurations 

Interconnection 

network 

Number 

of 

nodes 

Number 

of string 

elements 

(N) 

String 

dimension 

(N×4 

Bytes) 

Linear array 8 

2-D mesh 8 

Hypercube 8 

524,288 

1,048,576  

2,097,152 

4,194,304 

2MB 

4MB 

8MB 

16MB 

 

 

5.1. The parallel insertion sorting algorithm 

 

This section presents the results for the parallel 

Insertion sorting algorithm in MPI. The execution/ 

sorting/communication times corresponding to all the 

three types of message-passing architectures are 

presented in tables 2, 3, 4 and 5. The “Other 

operations” field in these tables represents the time 

required for MPI environment initialization, data 

input reading and variables settings. 

 

Table 2. Execution, sorting and communication time 

for 2MB string size (in seconds) 

2MB 

string 

Total 

execution 

time 

Sorting 

Time 

Comm. 

time 

Other 

operations 

Sequential 425.841 425.831 0.000 0.010 

Linear 

Array 289.924 288.987 0.930 0.007 

2-D Mesh 287.624 287.102 0.517 0.004 

Hypercube 287.834 287.448 0.379 0.005 

 

Table 3. Execution, sorting and communication time 

for 4MB string size (in seconds) 

4MB 

string 

Total 

execution 

time 

Sorting 

Time 

Comm. 

time 

Other 

operations 

Sequential 1714.627 1714.587 0.000 0.039 

Linear 

Array 1172.237 1169.986 2.194 0.056 

2-D Mesh 1170.226 1168.199 1.994 0.032 

Hypercube 1171.065 1169.182 1.856 0.026 

 



Table 4. Execution, sorting and communication time 

for 8MB string size (in seconds) 

8MB 

string 

Total 

execution 

time 

Sorting 

Time 

Comm. 

time 

Other 

operations 

Sequential 6889.789 6889.710 0.000 0.079 

Linear 

Array 4884.873 4870.190 13.689 0.993 

2-D Mesh 4964.767 4951.410 12.360 0.996 

Hypercube 4712.252 4701.073 11.174 0.004 

 

Table 5. Execution, sorting and communication time 

for 16MB string size (in seconds) 

16MB 

string 

Total 

execution 

time 

Sorting 

Time 

Comm. 

time 

Other 

opera-

tions 

Sequential 27454.589 27454.439 0.000 0.150 

Linear 

Array 19090.490 18995.740 94.591 0.155 

2-D Mesh 18890.350 18889.740 91.602 0.605 

Hypercube 18889.910 18801.250 88.649 0.004 
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Fig. 9. Parallel versus sequential sorting time. 

(Insertion sorting algorithm) 
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Fig. 10. Communication time for the three parallel 

architectures emulated on the 8 Pentium IV LAN. 

(Insertion sorting algorithm) 
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Fig. 11. Parallel versus sequential sorting time for 

2MB, 4 MB, 8 MB and 16 MB input string size. 

(Insertion sorting algorithm) 
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Fig. 12. Parallel communication time for 2MB, 4 

MB, 8 MB and 16 MB input string size. 

(Insertion sorting algorithm) 

 

 

5.2. The parallel quicksort algorithm 

 

In this section we present the results for the parallel 

Quicksort algorithm. The execution, sorting and 

communication times corresponding to all the three 

types of message-passing architectures are presented 

in tables 6, 7, 8 and 9. The “Other operations” field 

in these tables represents the time required for MPI 

environment initialization, data input reading and 

variables settings. 

 

Table 6. Execution, sorting and communication time 

for 2MB string size (in seconds) 

2MB 

string 

Total 

execution 

time 

Sorting 

Time 

Comm. 

time 

Other 

operations 

Sequential 0.301 0.283 0.000 0.018 

Linear 

Array 2.682 0.100 2.573 0.008 

2-D Mesh 1.779 0.101 1.567 0.011 

Hypercube 1.408 0.101 1.009 0.013 

 



Table 7. Execution, sorting and communication time 

for 4MB string size (in seconds) 

4MB 

string 

Total 

execution 

time 

Sorting 

Time 

Comm. 

time 

Other 

operations 

Sequential 0.570 0.570 0.000 0.036 

Linear 

Array 6.578 0.238 6.181 0.159 

2-D Mesh 4.487 0.246 3.743 0.162 

Hypercube 3.675 0.241 2.401 0.162 

 
Table 8. Execution, sorting and communication time 

for 8MB string size (in seconds) 

8MB 

string 

Total 

execution 

time 

Sorting 

Time 

Comm. 

time 

Other 

operations 

Sequential 1.342 1.270 0.000 0.071 

Linear 

Array 11.853 0.575 11.230 0.047 

2-D Mesh 8.705 0.582 6.185 0.048 

Hypercube 7.221 0.606 4.233 0.047 

 

Table 9. Execution, sorting and communication time 

for 16MB string size (in seconds) 

16MB 

string 

Total 

execution 

time 

Sorting 

Time 

Comm. 

time 

Other 

operations 

Sequential 2.403 2.403 0.000 0.150 

Linear 

Array 27.001 0.799 26.070 0.132 

2-D Mesh 17.686 0.789 16.412 0.134 

Hypercube 13.808 0.780 12.056 0.138 

 
The sequential sorting time and the parallel sorting 

time (for the three parallel emulated topologies) are 

represented in figure 13 and 15. The sequential 

sorting time corresponds to the sequential version of 

the Quicksort algorithm implemented on a single 

Pentium IV processor system. The parallel sorting 

time corresponds to the parallel version of the 

Quicksort algorithm implemented on the three 

parallel architectures (linear array, two-dimensional 

mesh and hypercube) emulated on the 8 Pentium IV 

LAN.  

How we expected, the parallel sorting time is 

practically independent of the parallel system 

topology and is 2.80 (for 2 MB string size)  / 2.36 (4 

MB) / 2.16 (8 MB) / 3.04 (16 MB) times smaller than 

sequential sorting time. There are many difficulties 

for sorting time evaluation in a multitasking 

environment. Despite of the mentioned difficulties, 

the average speed-up is 2.59 which is not very far 

from theoretical speed-up of log(p) = log(8) = 3; this 

confirms the efficiency of our parallel Quicksort 

algorithm. 

On the contrary, the communication time is strongly 

dependent on the parallel system topology (fig. 14 

and 16). The communication time is rather big 

because of the fact that the three parallel topologies 

were emulated on a LAN. Relevant are not the 

absolute values of the communication time but the 

comparative values of this time. The average 

communication time for 2-D mesh topology 

(hypercube) is only 59.88% (40.51%) of average 

communication time for linear array. 

As the node degree increases and the parallel 

architecture topology matches better the 

communication pattern implemented in the parallel 

algorithm, as the communication time decreases and 

the parallel application becomes more efficient. This 

is confirmed by the communication time measured 

on each parallel system topology (fig. 14 and 16). 
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Fig. 13. Parallel versus sequential sorting time. 

(Quicksort algorithm) 
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Fig. 14. Communication time for the three parallel 

architectures emulated on the 8 Pentium IV LAN. 
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6. CONCLUSIONS 

 

From our experiments the following conclusions can 

be drawn: 

 

• The efficiency of parallel application depends on 

both parallel algorithm efficiency (see parallel 

Quicksort related to parallel Insertion sorting) 

and parallel machine topology; 

• In order to obtain a global optimization (minimal 

execution time) a perfect match must be reached 



between the parallel algorithm and the parallel 

machine topology; 

• The efficiency of the parallel application 

increase as the amount of data processed growth; 

• The communication time is strongly related to 

the architecture topology. Even if in absolute 

values the communication times in our 

experiments are very high because of the 

physical support used, by referring to the relative 

values the conclusions become confident and not 

dependent on physical platform. 
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Fig. 15. Parallel versus sequential sorting time for 

2MB, 4 MB, 8 MB and 16 MB input string size. 

(Quicksort algorithm) 
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Fig. 16. Parallel communication time for 2MB, 4 

MB, 8 MB and 16 MB input string size. 

(Quicksort algorithm) 

 
Let K be the ratio between the sorting times for 

parallel Insertion sorting algorithm and parallel 

Quicksort algorithm respectively. In fig. 17 we 

present this K ratio related to the input string size. As 

can be seen the efficiency of parallel Quicksort 

algorithm versus parallel Insertion sorting algorithm 

increase as the amount of input data increase. 

Designing a parallel application is a complex task; an 

optimal parallel algorithm doesn’t always produce 

the best results. In all the parallel applications the 

algorithm, the amount of data to be processed and the 

parallel machine characteristics (number of 

processors, the interconnection network topology, the 

intercommunication functions and protocols) have to 

be analyzed and correlated. 

Therefore, the building process of the parallel 

applications is a difficult task: there are many 

successive steps and the decisions taken in every step 

will affect the following steps and, at the end, the 

global performances of the parallel application. 
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Fig. 17. K ratio for 2 MB, 4 MB, 8 MB and 16 MB 

input string size. 
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