

DESIGN AND EVALUATION OF TWO PARALLEL SORTING ALGORITHMS BASED ON MPI

TECHNOLOGY

Ioan Z. MIHU, Horia V. CAPRITA

“Lucian Blaga” University of Sibiu, Computer Science Department, str. Emil Cioran,

nr. 4, Sibiu, 550025, ROMANIA

E-mail: ioan.z.mihu@ulbsibiu.ro, horia.caprita@ulbsibiu.ro

Abstract: The message-passing architectures consist of multiple computers

interconnected through an interconnection network, communicating one with other by

send-receive message functions and synchronized by barrier functions. At the moment

there exist many libraries that provide a set of standardized functions for parallel

programming like Message Passing Interface (MPI). MPI library allow the

implementation of parallel algorithms on message-passing architectures. In this paper we

propose two parallel sorting algorithms designed for message-passing architectures and

implemented using MPI library: parallel Insertionsort and parallel Quicksort algorithms.

We evaluate the performance of the proposed algorithms on three types of message

passing architectures: linear array, two-dimensional mesh and hypercube. We evaluate

the sorting time, the interprocesses communication time and the total processing time for

each topology and we analyze the efficiency of the two parallel sorting algorithms related

to the parallel system topology.

Keywords: message passing architecture, parallel programming, parallel algorithms,

sorting algorithms

1. INTRODUCTION

The key issue of parallel architectures is to exploit

the potential of parallelism in real applications in

order to minimize the processing time. Once the

parallel systems have been developed, the scientists

have to design efficient parallel algorithms usually

derived from the correspondent sequential

algorithms. A parallel program consists (generally) of

more processes that synchronize and communicate

between each other. A very important issue is to

obtain an optimum matching degree between the

parallel algorithm and the topology of the parallel

machine (Culler et Singh 1999). Moreover, if the real

application doesn’t contains a sufficient potential of

parallelism, then the parallel derived algorithm will

be inefficient and very expensive at the execution

time. There are two classes of architectures that

exploit coarse-grain parallelism: Shared-Memory

Architectures and Message Passing Architectures.

The former category includes the multiprocessor

systems in which the processes synchronize and

communicate through the shared variables stored on

the common memory (fig. 1). The second class

includes the multicomputer systems based on static

or dynamic interconnection networks and

communicating by sending data packets from the

source node to the destination node through the

network (fig. 2). The multicomputer systems can be

emulated on local area networks (LANs) using MPI

library. The communication process is implemented

with send-receive message functions. Using a LAN

the MPI environment can emulate any type of

interconnection network topology (linear array,

meshes, hypercube etc.). Based on MPI library we

implemented and evaluated the parallel Insertionsort

and parallel Quicksort algorithms on three types of

message-passing architectures: linear arrays, two-

dimensional mesh, hypercube.

Interconnection
network

P1

P2

Pp

M1

M2

Mq

Shared Memory

Fig. 1. Shared-Memory Architecture.

Interconnection
Network

P1

P2

Pp

Fig. 2. Message-Passing architecture.

2. SIMULATED PARALLEL ARCHITECTURES

2.1. Linear array network

The linear array is a one-dimensional network in

which N-nodes (processors) are connected by N-1

links in a line (fig. 3). Internal nodes have degree 2,

and the terminal nodes have degree 1. The diameter

is N-1, which is rather long for large N. The bisection

is b=1. Linear arrays have the simplest connection

topology, the structure is not symmetric and poses

communication inefficiency when N becomes very

large. This is because any data entering the network

from one end must pass through all nodes in order to

reach the other end of the network (Culler et Singh,

1999). However the linear array allows concurrent

use of different sections (channels) of the structure

by different source and destination pairs.

0 1 2 3 4 5 6 7

Fig. 3. Linear array network.

2.2. Two-dimensional mesh network

A two-dimensional mesh consists of k1×k2 nodes,

where ki≥2 denotes the number of nodes along

dimension i. Figure 4 represents the two-dimensional

mesh used in our experiments (k1=4 and k2=2). In

this mesh network each node is connected to its

north, south, east and west neighbors. In general, a

node at row i and column j is connected to the nodes

at locations (i-1, j), (i+1,j), (i, j-1) and (i, j+1).

Therefore, the node degree is 4 (excepting the node

on the edges and vertices) and the diameter of the

mesh network is equal to the distance between nodes

at opposite corners: (k1-1)+(k2-1). The routing of data

through a mesh network can be accomplished in a

straightforward manner (Lee et al, 2001). The

following simple routing algorithms routes a packet

from source S to destination D in a n×m mesh

network:

1. Compute the row distance R as:

 mSmDR // −=

2. Compute the column distance C as:

)(mod)(mod nSnDC −=

3. Add the values R and C to the packet header

at the source nod

4. Starting from the source node, send a packet

for R rows and then C columns

The values R and C determine the number of rows

and columns that the packet needs to travel. The sign

of the values R and C determines the direction of the

message at each node. When R (C) is positive, the

packet travels downward (right); otherwise, the

packet travels upward (left). Each time that the

packet travels from one node to the adjacent node

downward, the value R is decremented by 1, and

when it travels upward, R is incremented by 1. Once

R becomes 0, the packet starts traveling in the

horizontal direction. Each time that the packet travels

from one node to the adjacent node in the right

dimension, the value C is decremented by 1, and

when it travels in the left direction, C is incremented

by 1. When C becomes 0, the packet has arrived at

the destination.

2.3. Hypercube network

A n-cube network, also called hypercube, consists of
nN 2= nodes; n is called the dimension of the

hypercube network. In a n-cube the nodes are

considered the corners of an n-dimensional cube and

the network connects each node to its n neighbors.

The node degree of n-cube network is n and so does

the network diameter. In fact, the node degree

increases linearly with respect to the network

dimension, making it difficult to consider the

hypercube a scalable architecture. In a n-cube,

individual nodes are uniquely identified by n-bit

addresses ranging from 0 to N-1. Given a node with

binary address d, this node is connected to all nodes

whose binary addresses differ from d in exactly 1 bit.

For example, in a 3-cube, in which there are 8 nodes,

node 7 (address 111) is connected to node 6 (110), 5

(101) and 3 (011). Figure 5 demonstrates all the

connections between the nodes. As can be seen in a

3-cube, two nodes are directly connected if their

binary addresses differ by 1 bit. This method of

connection is used to control the routing of data

through the network in a simple manner. The

following routing algorithm routes a packet from its

source)...(01 ssS n−
= to destination)...(01 ddD n−

= :

1. Tag 01...ttDST n−
=⊕= is added to the

packet header at the source node (⊕ denotes

XOR function).

2. If 0≠it for some 10 −≤≤ ni , then use

the i-th dimension link to send the packet to

a new node with the same address as the

current node except its i-th bit, and change ti

to 0 in the packet header.

3. Repeat step 2 until 0=it for all

10 −≤≤ ni

00 01

10 11

20 21

30 31

0

2

4

6

1

3

5

7

Fig. 4. Two-dimensional mesh network.

100

000 001

011010

101

110 111

0 1

2 3

4 5

6 7

Fig. 5. 3-cube network.

3. THE PARALLEL INSERTION SORTING

ALGORITHM

The parallel version of the algorithm consists of the

following steps:

1. splitting the unsorted string in substrings of

N/p elements (N – string dimension; p –

number of processors);

2. sending the substrings from the master

processor to others. Each processor will

receive a substring to be sorted;

3. sorting the substrings by the insertion

sorting method in all the processors. This

will be done in parallel by all the processors

4. collecting the sorted substrings. This will be

done according to the tree presented in

figure 6.

5. repeat steps 3 and 4 until all the substrings

will be collected in P0.

6. final sorting in P0

The sequential sorting algorithm complexity is

O(N
2
). According to the implementation model

presented in figure 7, the complexity of the parallel

algorithm is:

 →← →← →← →←

=

+

+

+

3210

22222

32

11

4166464

LevelLevelLevelLevel

N
O

N
O

N
O

N
O

N
O

P0 P1 P2 P3 P4 P5 P6 P7

P0

P0

P0

P2 P4 P6

P4

A0[N/p]

Sorted string

P0

A[N] (Unsorted string)

Interconnection
Network

(linear array, 2D mesh, hypercube)

A2[N/p]

A1[N/p] A3[N/p]

A4[N/p]

A5[N/p]

A6[N/p]

A7[N/p]

A0=A0+A1 A2=A2+A3 A4=A4+A5 A6=A6+A7

A0=A0+A2 A4=A4+A6

A[N]=A0+A4

If Level>=1 Ai is sorted string

Level

1

2

3

4

Level
factor

1

2

4

8

Fig. 6. Parallel sorting algorithm

4. THE PARALLEL QUICKSORT ALGORITHM

The sequential Quicksort algorithm is based on

divide and conquer method. This method consists of

two steps:

1. Divide the problem into smaller

independent subproblems and solve these

subproblems individually;

2. Conquer: solve the main problem by

combining the solutions of the individual

subproblems.

For the Quicksort algorithm the two steps consist in:

1. Divide: Partition function splits the string

into two nonempty substrings (the elements

positioned in the lower substring are all

smaller than the elements of the upper

substring);

2. Conquer: substrings are sorted by recursive

calls to Quicksort function.

Our parallel version of the algorithm follows two

phases:

Phase 1 – Divide and Conquer (figure 8a):

1. Divide: Find the pivot m (partition function

partitions the string into two nonempty

substrings). Starting from the root of the

tree, on each level, the nodes implied in

sorting will send the upper substring to the

node placed on the next level. That is, on the

last level, each processor will have a

substring to be sorted;

2. Conquer: The substrings are sorted in

parallel by recursive calls to sequential

Quicksort algorithm. In this step all the

processors runs the sequential algorithm.

Phase 2 – Collecting the sorted substrings:

In this phase every node store his sorted

substring. Using a similar tree the P0 node

will collect the sorted substrings from the

others nodes in four steps. Therefore,

through the concatenation of all these

substrings, the node P0 obtains the sorted

string on the last level. This will be done

according to the tree presented in figure 8b.

Parallel_Quicksort (begin, limit, level)

{

if (level>1){

//The processors implied in sorting find the pivot m

 m=Seq_Quicksort_Partition(begin,limit);

//Sending the upper substring to the others

processors

 m=Send_Upper_SubString(m,limit,level);
//Every processor will find, in function of current

level, the tree //branch on which it works

 left=Find_Branch(level);

 if(left==1){

 Parallel_Quicksort(begin,m,level/2);

 }

 else if(left==0){

 Parallel_Quicksort(m+1,limit,level/2);

 }}

else{ //level=1, call Sequential_Quicksort

 Sequential_Quicksort(begin,limit);

}}

Fig. 7. Parallel Quicksort algorithm.

The complexity of the sequential Quicksort algorithm

is O(n×log(n)). For the parallel quicksort algorithm,

the covering of the sorting tree nodes can be made in

parallel unlike in the sequential case, when the single

processor covers only one node at a time. For the

parallel version the complexity becomes

O(n×log(n)/log(p)), where p is number of processors.

P0 P1 P2 P3 P4 P5 P6 P7

P0

P0

P0

P2 P4 P6

P4

A[0...m]

N=m+1

Level

1

2

3

4

A[N] (Unsorted string)

A[m+1...N-1]

N=N-m* **

* ** * **

* ** * ** * ** * **

Parallel_QuickSort

Sequential_QuickSort

Phase 1

Parallel_QuickSort

Parallel_QuickSort

Fig. 8a. Parallel Quicksort algorithm – Phase 1.

P0 P1 P2 P3 P4 P5 P6 P7

P0

P0

P0

P2 P4 P6

P4

A[0...m]
N=m+1

Level

1

2

3

4

A[N] (Sorted string)

A[m+1...N-1]
N=N-m* **

* ** * **

* ** * ** * ** * **

Phase 2

Fig. 8b. Parallel Quicksort algorithm – Phase 2.

5. EXPERIMENTAL RESULTS

In this section we evaluate the performances of the

parallel Insertion sorting and parallel Quicksort

algorithms on three parallel topologies: linear array,

two-dimensional mesh and hypercube (3-cube).

These topologies were emulated using MPI library on

a LAN with 8 Intel Pentium IV (2,4GHz) / 256 MB

RAM computers connected by a 100Mbs switch. The

input data (the unsorted string) were obtained from

an input file consisting of random values. Therefore,

we had the same input data in all simulated

architectures. Table 1 presents data input

characteristics according to the simulated parallel

topologies for the two algorithms.

Table 1. The input parameters and the simulated

configurations

Interconnection

network

Number

of

nodes

Number

of string

elements

(N)

String

dimension

(N×4

Bytes)

Linear array 8

2-D mesh 8

Hypercube 8

524,288

1,048,576

2,097,152

4,194,304

2MB

4MB

8MB

16MB

5.1. The parallel insertion sorting algorithm

This section presents the results for the parallel

Insertion sorting algorithm in MPI. The execution/

sorting/communication times corresponding to all the

three types of message-passing architectures are

presented in tables 2, 3, 4 and 5. The “Other

operations” field in these tables represents the time

required for MPI environment initialization, data

input reading and variables settings.

Table 2. Execution, sorting and communication time

for 2MB string size (in seconds)

2MB

string

Total

execution

time

Sorting

Time

Comm.

time

Other

operations

Sequential 425.841 425.831 0.000 0.010

Linear

Array 289.924 288.987 0.930 0.007

2-D Mesh 287.624 287.102 0.517 0.004

Hypercube 287.834 287.448 0.379 0.005

Table 3. Execution, sorting and communication time

for 4MB string size (in seconds)

4MB

string

Total

execution

time

Sorting

Time

Comm.

time

Other

operations

Sequential 1714.627 1714.587 0.000 0.039

Linear

Array 1172.237 1169.986 2.194 0.056

2-D Mesh 1170.226 1168.199 1.994 0.032

Hypercube 1171.065 1169.182 1.856 0.026

Table 4. Execution, sorting and communication time

for 8MB string size (in seconds)

8MB

string

Total

execution

time

Sorting

Time

Comm.

time

Other

operations

Sequential 6889.789 6889.710 0.000 0.079

Linear

Array 4884.873 4870.190 13.689 0.993

2-D Mesh 4964.767 4951.410 12.360 0.996

Hypercube 4712.252 4701.073 11.174 0.004

Table 5. Execution, sorting and communication time

for 16MB string size (in seconds)

16MB

string

Total

execution

time

Sorting

Time

Comm.

time

Other

opera-

tions

Sequential 27454.589 27454.439 0.000 0.150

Linear

Array 19090.490 18995.740 94.591 0.155

2-D Mesh 18890.350 18889.740 91.602 0.605

Hypercube 18889.910 18801.250 88.649 0.004

Sorting time

0

5000

10000

15000

20000

25000

30000

2 MB 4 MB 8 MB 16 MB

SEQUENTIAL LINEAR ARRAY 2-D MESH HYPERCUBE

Fig. 9. Parallel versus sequential sorting time.

(Insertion sorting algorithm)

Communication time

0

20

40

60

80

100

2 MB 4 MB 8 MB 16 MB

LINEAR ARRAY 2-D MESH HYPERCUBE

Fig. 10. Communication time for the three parallel

architectures emulated on the 8 Pentium IV LAN.

(Insertion sorting algorithm)

Sorting time related to input string

size

0

5000

10000

15000

20000

25000

30000

2 MB 4 MB 8 MB 16 MB

SEQUENTIAL LINEAR ARRAY

2-D M ESH HYPERCUBE

Fig. 11. Parallel versus sequential sorting time for

2MB, 4 MB, 8 MB and 16 MB input string size.

(Insertion sorting algorithm)

Communi c a t ion t i me r e l a t e d t o input st r ing si z e

0

10

20

30

40

50

60

70

80

90

100

2 MB 4 MB 8 MB 16 MB

LINEAR ARRAY 2-D MESH HYPERCUBE

Fig. 12. Parallel communication time for 2MB, 4

MB, 8 MB and 16 MB input string size.

(Insertion sorting algorithm)

5.2. The parallel quicksort algorithm

In this section we present the results for the parallel

Quicksort algorithm. The execution, sorting and

communication times corresponding to all the three

types of message-passing architectures are presented

in tables 6, 7, 8 and 9. The “Other operations” field

in these tables represents the time required for MPI

environment initialization, data input reading and

variables settings.

Table 6. Execution, sorting and communication time

for 2MB string size (in seconds)

2MB

string

Total

execution

time

Sorting

Time

Comm.

time

Other

operations

Sequential 0.301 0.283 0.000 0.018

Linear

Array 2.682 0.100 2.573 0.008

2-D Mesh 1.779 0.101 1.567 0.011

Hypercube 1.408 0.101 1.009 0.013

Table 7. Execution, sorting and communication time

for 4MB string size (in seconds)

4MB

string

Total

execution

time

Sorting

Time

Comm.

time

Other

operations

Sequential 0.570 0.570 0.000 0.036

Linear

Array 6.578 0.238 6.181 0.159

2-D Mesh 4.487 0.246 3.743 0.162

Hypercube 3.675 0.241 2.401 0.162

Table 8. Execution, sorting and communication time

for 8MB string size (in seconds)

8MB

string

Total

execution

time

Sorting

Time

Comm.

time

Other

operations

Sequential 1.342 1.270 0.000 0.071

Linear

Array 11.853 0.575 11.230 0.047

2-D Mesh 8.705 0.582 6.185 0.048

Hypercube 7.221 0.606 4.233 0.047

Table 9. Execution, sorting and communication time

for 16MB string size (in seconds)

16MB

string

Total

execution

time

Sorting

Time

Comm.

time

Other

operations

Sequential 2.403 2.403 0.000 0.150

Linear

Array 27.001 0.799 26.070 0.132

2-D Mesh 17.686 0.789 16.412 0.134

Hypercube 13.808 0.780 12.056 0.138

The sequential sorting time and the parallel sorting

time (for the three parallel emulated topologies) are

represented in figure 13 and 15. The sequential

sorting time corresponds to the sequential version of

the Quicksort algorithm implemented on a single

Pentium IV processor system. The parallel sorting

time corresponds to the parallel version of the

Quicksort algorithm implemented on the three

parallel architectures (linear array, two-dimensional

mesh and hypercube) emulated on the 8 Pentium IV

LAN.

How we expected, the parallel sorting time is

practically independent of the parallel system

topology and is 2.80 (for 2 MB string size) / 2.36 (4

MB) / 2.16 (8 MB) / 3.04 (16 MB) times smaller than

sequential sorting time. There are many difficulties

for sorting time evaluation in a multitasking

environment. Despite of the mentioned difficulties,

the average speed-up is 2.59 which is not very far

from theoretical speed-up of log(p) = log(8) = 3; this

confirms the efficiency of our parallel Quicksort

algorithm.

On the contrary, the communication time is strongly

dependent on the parallel system topology (fig. 14

and 16). The communication time is rather big

because of the fact that the three parallel topologies

were emulated on a LAN. Relevant are not the

absolute values of the communication time but the

comparative values of this time. The average

communication time for 2-D mesh topology

(hypercube) is only 59.88% (40.51%) of average

communication time for linear array.

As the node degree increases and the parallel

architecture topology matches better the

communication pattern implemented in the parallel

algorithm, as the communication time decreases and

the parallel application becomes more efficient. This

is confirmed by the communication time measured

on each parallel system topology (fig. 14 and 16).

S or t i ng t i me

0.00000

0.50000

1.00000

1.50000

2.00000

2.50000

3.00000

2 MB 4 MB 8 MB 16 MB

SEQUENTIAL LINEAR ARRAY 2-D M ESH HYPERCUBE

Fig. 13. Parallel versus sequential sorting time.

(Quicksort algorithm)

Communication time

0.00000

5.00000

10.00000

15.00000

20.00000

25.00000

30.00000

2 MB 4 MB 8 MB 16 MB

LINEAR ARRAY 2-D MESH HYPERCUBE

Fig. 14. Communication time for the three parallel

architectures emulated on the 8 Pentium IV LAN.

(Quicksort algorithm)

6. CONCLUSIONS

From our experiments the following conclusions can

be drawn:

• The efficiency of parallel application depends on

both parallel algorithm efficiency (see parallel

Quicksort related to parallel Insertion sorting)

and parallel machine topology;

• In order to obtain a global optimization (minimal

execution time) a perfect match must be reached

between the parallel algorithm and the parallel

machine topology;

• The efficiency of the parallel application

increase as the amount of data processed growth;

• The communication time is strongly related to

the architecture topology. Even if in absolute

values the communication times in our

experiments are very high because of the

physical support used, by referring to the relative

values the conclusions become confident and not

dependent on physical platform.

S or t i ng t i me r e la t e d t o i nput st r i ng si z e

0.00000

0.50000

1.00000

1.50000

2.00000

2.50000

3.00000

2MB 4MB 8MB 16MB

SEQUENTIAL LINEAR ARRAY

2-D M ESH HYPERCUBE

Fig. 15. Parallel versus sequential sorting time for

2MB, 4 MB, 8 MB and 16 MB input string size.

(Quicksort algorithm)

Communication time related to input string size

0.00000

5.00000

10.00000

15.00000

20.00000

25.00000

30.00000

2MB 4MB 8MB 16MB

LINEAR ARRAY 2-D MESH HYPERCUBE

Fig. 16. Parallel communication time for 2MB, 4

MB, 8 MB and 16 MB input string size.

(Quicksort algorithm)

Let K be the ratio between the sorting times for

parallel Insertion sorting algorithm and parallel

Quicksort algorithm respectively. In fig. 17 we

present this K ratio related to the input string size. As

can be seen the efficiency of parallel Quicksort

algorithm versus parallel Insertion sorting algorithm

increase as the amount of input data increase.

Designing a parallel application is a complex task; an

optimal parallel algorithm doesn’t always produce

the best results. In all the parallel applications the

algorithm, the amount of data to be processed and the

parallel machine characteristics (number of

processors, the interconnection network topology, the

intercommunication functions and protocols) have to

be analyzed and correlated.

Therefore, the building process of the parallel

applications is a difficult task: there are many

successive steps and the decisions taken in every step

will affect the following steps and, at the end, the

global performances of the parallel application.

K rat io relat ed t o t he input st r ing size

0

5000

10000

15000

20000

25000

30000

2 M B 4 M B 8 M B 16 M B

SEQUENTIAL LINEAR ARRAY

2-D M ESH HYPERCUBE

Fig. 17. K ratio for 2 MB, 4 MB, 8 MB and 16 MB

input string size.

REFERENCES

G. Allen, T. Dramlitsch, I. Foster, N. T. Karonis, M.

Ripeanu, E. Seidel, and B. Toonen. Supporting

efficient execution in heterogeneous distributed

computing environments with cactus and globus,

Supercomputing 2001. IEEE, Denver, 2001.

F. Bernman, A. Chien, K. Cooper, J. Dongarra, I.

Foster, D. Gannon, L. Johnsson, K. Kennedy, C.

Kesselman, L. T. D. Reed, and R. Wolski. The

GrADS project: Software support for high-level

grid application development, 27. August 2001.

D.E. Culler, J.P. Singh, Parallel computer

architecture. A hardware/software approach,

Morgan-Kaufmann Publishers, San Francisco,

1999.

E. Gabriel, M. Resch, and R. Ruhle. Implementing

MPI with optimized algorithms for

metacomputing, Message Passing Interface

Developer’s and Users Conference

(MPIDC’99), pages 31–41, Atlanta, March 10-

12 1999.

C. Lee, S. Matsuoka, D. Talia, A. Sussmann, M.

Muller, G. Allen, and J. Saltz. A Grid

programming primer. Global Grid Forum,

August 2001.

S. S. Vadhiyar, G. E. Fagg, and J. J. Dongarra.

Performance modelling for self-adapting

collective communications for MPI, LACSI

Symphosium. Springer, Eldorado Hotel, Santa

Fe, NM, Oct. 15-18 2001.

