

HUMANOID ROBOTI WITH VISION RECOGNITION CONTROL SYSTEM.

Cosmin Başca, Mihai Taloş, Remus Brad member IEEE

Abstract: This paper presents a solution to controlling humanoid robotic systems. The

robot can be programmed to execute certain complex actions based on basic motion

primitives. The humanoid robot is programmed using a PC. The software running on the

PC can obtain at any given moment information about the state of the robot, or it can

program the robot to execute a different action, providing the possibility of implementing

a complex behavior. We want to provide the robotic system the ability to understand

more on the external real world. In this paper we describe a method for detecting ellipses

in real world images using the Randomized Hough Transform with Result Clustering.

Real world images are preprocessed – noise reduction, greyscale transform, edge

detection and finaly binarization – in order to be processed by the actual ellipse detector.

After all the ellipses are detected a post processing phase clusters the results.

Keywords: Adaptive Thresholding, Automation, Clustering, Ellipse Detection, Hough

Transform, Humanoid Robot, Microcontroller, Robotics.

1. INTRODUCTION

Humanoid robots are the best solution for Human

Computer Interaction (HCI) based research. Unlike

other type of robotic systems (e.g. wheeled robots)

humanoid robots can use other forms of intuitive

communication such as body language, mimics and

gaze. Humanoid robots are also easily accepted by

humans and can easily integrate into environments

designed for humans. Up to know a series of

humanoid robots have been designed and constructed

by prestigious companies like: Sony, Fujitsu, Toyota

or Honda. This robotic systems have remarkable

technical characteristics but are also very expensive

(they can be rented or bought for tens of thousands of

dollars), and some of them are only prototypes.

In academic environments it is usually necessary

to acquire more than one unit, which is extremely

expensive. The solution that we adopted is to

augment an already present on the market robotic

system. We have chosen WooWee’s RoboSapien

robot, due to its availability and cheapness compared

to other similar systems.

The proposed robotic system is composed of a PC

and the robot itself (see Figure 1.).

Fig. 1. System overview.

The communication between the two parts of the

system is realized through the standard serial port

Robotic System

Communication

Bus

Workstation (PC)

Pic18F (452 and 2320)

microcontrollers

for system controll.

Video Capture Device

(commonly a web cam)

(RS232). Using an advanced communication

protocol, complex actions are forwarded to the robot

(e.g. robot initialization, or robot state interrogation).

The robot replies with a communication

synchronization package, which can contain relevant

information about the ongoing action of the robotic

system. Feedback is provided via a CMOS – video

sensor (a common web cam) and six bumper sensors.

The most relevant information about the surrounding

environment can be acquired through the use of the

CMOS sensor, which provides information under the

form of a continuous video stream at up to 25 frames

per second, thus being adequate for obstacle

detection, real world pattern recognition, motion

planning, basically for a greater understanding of the

surrounding environment.

In this paper we propose an algorithm for ellipse

detection. Ellipses are the most common features that

appear in images, (most often circular shapes appear

as ellipses due to the projection transform, only

spherical objects remain as circles – e.g. balls – when

projecting 3D space to 2D space). The Hough

technique is particularly useful for computing a

global description of a feature(s) (where the number

of solution classes need not be known a priori),

given (possibly noisy) local measurements. The

Hough Transform is widely used for parametric

curve detection. A generalized Hough (Ballard,

1981) transform can be employed in applications

where a simple analytic description of a feature(s) is

not possible. Due to the computational complexity of

the generalized Hough algorithm, this variant of the

Hough Transform is rarely used in practice. We will

only focus on detecting ellipses using the Hough

Transform. The traditional approach for ellipse

detection using the Hough technique is similar to line

or circle detection (Duda and Hart, 1972). The

parametric equation of a line is written as follows:

ryx =+ θθ sincos (1)

The Hough Transform is actually a map from xy

space to the parameter space rθ. In order to find all

the lines in a given image we wold have to solve the

given parametric equation for known x and y

coordinates. The process of ellipse detection is

similar but evidently more complex and more time

consuming as the parametric equation would be of

the following form:

0222 22
=+++++ feydxcybxyax (2)

We know have to find all five parameters of the

equation in order to detect a valid ellipse. Evidently

this approach would require solving the equation for

five different points on the ellipse, thus mapping xy

points to a five dimensional space, (hence having to

manage a five dimensional accumulator). This

approach is not only memory expensive but also

computationally intensive, as the algorithm in its

brute search form would have a)(5nO complexity.

Although there are refined variations of this approach

(see Ballard, 1981) these are still expensive

considering memory or computational time.

In order to overcome this inconveniencies we have

further developed on the idea of Chellali et al., 2003

who use only one dimensional accumulator for

ellipse voting, and reducing algorithm complexity.

2. BASIC SYSTEM ARHITECTURE

The robot is 34 cm high and 31 cm width. The

robots mobile parts are moved using 7 DC motors

having 9 degrees of freedom (DOF). One motor is

used for left – right tilt, one motor for each foot

(moving the foot back and front), one motor for each

shoulder (moving the arm up and down) and one

motor for each arm (opening the hand to grip and

closing it) as can be seen in Figure 2.

Fig. 2. Robot physical layout

The robot has bumper sensors on both of its legs

(in front and behind) and on both of his gripper hands

(located on the frontal finger of each hand). Unlike

other complex humanoid robots, the robot only uses

three of the motors for motion (the trunk motor and

both of the leg motors). The idea behind its motion is

dynamic walking. The robots upper body swings like

a pendulum left and right shifting the weight of the

body to one side, allowing the robot to move its

opposite foot off the ground. The robot is comprised

of two microcontrollers, the interface electronics, and

the communication bus with the PC. The DC Motors

are powered by a different power source than the one

powering the microcontroller (this is necessary in

order to eliminate DC voltage fluctuations which

could cause the microcontroller to malfunction or to

reset). The motors can be driven in both rotation

senses.

The microcontroller used for robot motion control

is pic18F452 and for camera positioning is used a

pic18F2320. The microcontrollers are produced by

Left Leg

Motor
Right Leg

Motor

Trunk

Motor

Left Shoulder

Motor

Right

Shoulder

Motor

Left

Arm

Motor

Right

Arm

Motor

Microchip. Using communication interrupts, special

interrupt handlers (receive – transmit) are used to

implement full – duplex communication. The

reception routine checks if the input data is valid – it

checks for a synchronization header in the data

package. If the synchronization header is not present

than the routine resets the state of the reception

buffer, the same event occurs when synchronization

packages throughout the entire action package are not

found or a timeout exception occurs. If the received

data comprises a valid action package, than the main

program routine is notified and the action package is

stored in internal receive buffers for further

processing. The routine that realizes the motion of

the robot is called based on a timer interrupt,

provided by the microcontroller. The main program

routine (started at reset) analyzes the received

requests from the PC, starts the motion action of the

robot, initializes response transmission to PC, and

tests if any of the bumper sensors has been activated.

A secondary routine is used for middle arm

positioning. The arm has a switch which is turned on

when the arm reaches its middle position; the switch

turns off after the hand leaves the middle position.

This secondary routine is input state interrupt based

(the interrupt is activated when the microcontrollers

input port state changes).

As mentioned before complex motion actions are,

accomplished through the use of basic motion

primitives. The robot has 21 basic motion primitives

as it can be seen in table 1.

TABLE 1: BASIC MOTION PRIMITIVES.

no. Motion

Primitive

no. Motion

Primitive

no. Motion

Primitive

1 Right

Arm Up

2 Right

Arm

Front

3 Right

Arm

Down

4 Left Arm

Up

5 Left Arm

Front

6 Left Arm

Down

7 Right

Hand In

8 Right

Hand

Mid

9 Right

Hand

Open

10 Left

Hand In

11 Left

Hand

Mid

12 Left

Hand

Open

13 Tilt Left 14 Tilt Mid 15 Tilt Right

16 Right

Leg Front

17 Right

Leg Mid

18 Right

Leg Back

19 Left Leg

Front

20 Left Leg

Mid

21 Left Leg

Back

The basic motion primitives can be executed as

fast as 1ms at 40 MHz (maximum clock cycle

controller speed). The controller has to be powered at

5 V DC in order to operate at 40 MHz, if the power

voltage drops below 5 V (if batteries are in use) than

the speed of the controller drops to 20 MHz or less.

The robot operates successfully within 40 to 4 MHz

microcontroller speed; less than 4 MHz the execution

latency exceeds 50ms, resulting in faulty robot

control (e.g. the robot can not walk properly – legs

do not move symmetrically).

Fig. 3. Program organization

 Camera positioning is accomplished both

horizontal and vertical providing the robot with a

large field of view. The routine used to position the

camera highly resembles the main program used for

robot motion control, the routine used to execute an

action is divided into three parts : one routine for

each axis positioning and one for monitoring the

global position of the camera.

3. PROGRAMABLE API DESCRIPTION

Fig. 4. Programming API architecture description.

Both basic motion primitives and high level actions

are stored in a globally available database system

called RoboRegistry as it can be seen in Figure 5.

Main Program

Motion Action

Execution Routine

Pic18F452

controller

Serial Reception

Routine

Serial Transmission

Routine

Operating System (OS)

JAI 1.1.2 JCA 1.1

Robo API

JMF 2.1.1

JDK 1.5

Fig. 5. Database System architecture.

The robotic control is achieved through dedicated

control interfaces called controllers, the user has to

have access to a controller in order to issue requests

to the robotic system or to capture feedback from it,

as it can be observed in Figure 6.

Fig.6. Robotic system high-level control model (The

control interface architecture).

To robot is equipped with a CMOS – video sensor (in

our case a common web-cam). Through the use of

this sensor the system actually receives the most of

it’s feedback from the external environment.

Although the robot has bumper sensors mounted on

both it’s feet and gripper hands, this sensors provide

limited feedback regarding changes in the external

environment. The web cam can be used to track

motion, detect obstacles, to construct navigation

maps, for motion planning, pattern detection

(detection of real world objects), human detection

etc.

3.1 Ellipse detection algorithm

The basic information flow is as described in

Figure 7. As it can be seen in Figure 7 the input for

the detector block is a binarized image obtained by

applying an adaptive threshold (we use the Maximum

Variance Threshold as it varies with luminosity) to

the gradient image. This step can be further refined,

because the detector is highly dependent on its

output. All edge pixels are white (the foreground)

and the rest are black (background). All contours

(features) hence ellipse contours as well should be

well defined and noise should be greatly reduced.

Fig. 7. Processing steps involved in the algorithm.

In order to detect all five parameters of an ellipse

only three points are needed, two of which are

considered to be the ellipses vertices. We will not

detail Chellali et al., 2003 algorithm as it is not the

porpoise of this paper, but we will mention the basics

of it as it is necessary in order to get an

understanding of the modifications we made. Given

the two vertices of the ellipse the determination of

four of the five ellipse parameters is straightforward

using the following formulas:

2

21
0

xx
x

+
= (3)

2

21
0

yy
y

+
= (4)

2

)()(2

12

2

12 yyxx
a

−+−
= (5)

)tan(
12

12

xx

yy

−

−
=α (6)

x0 and y0 being the ellipses center coordinates a

(please note that a from formula (5) is not the same

as a from formula (2)) being half of its major axis

and α being the orientation of the ellipse.

A third point is needed, in order to determine the

Source Image from

capture Device

GreyScale Transform and

Noise Reduction using

Median X Filtering

Sobel Edge Detection

Adaptive Threshold

using Maximum

Variance Threshold

Ellipse Detection using

Hough Transform

RoboRegistry

High Level

Actions

User Database

Query Object

Queries the database for high level

actions or for basic commands

regardless of database implementation

Basic Motion

Primitives

JAI Device

Controller

 452

Device

Controller

 2320

Controller

User Control

Object

The user issues commands

regarding complex motion

actions to the robotic system and

also receives feedback through

the controller interface.

fifth parameter of the ellipse – the half length of its

minor axis - using the following approximation

formulas:

τ

τ

222

222

cos

sin

da

da
b

−
= (7)

ad

fda

2
cos

222
−+

=τ (8)

where d, τ and f can be observed in Figure 8.

Fig 8. Ellipse geometry, f1 and f2 are the ellipses

foci.

Based on formulas (3) to (8) all ellipses in the

image can be detected. The algorithm as proposed by

Chellali et al., 2003 has a)(3nO complexity. The

complexity of the algorithm can be further reduced

by transforming the method into a Randomized

Hough Transform (RHT).

In the first step we randomly select m pairs of

points satisfying the search domain condition (the

number of points initially selected is considerably

lower than in the original implementation – we only

select m = n*C where C = 1, 2, 3,… instead of

selecting n*n) thus reducing the complexity to

)(
2

C

n
O , where as mentioned before C is a constant

much smaller than n. The number of selected pairs

must be sufficiently large in order to detect all

present ellipses, in our current implementation C = 2.

When an ellipse is detected the points located on its

contour are not deleted from the search array,

because this significantly lowers the performance of

the algorithm –e.g. suppose a false ellipse is detected

intersecting the real ellipse because of noise,

removing its edge points would mean that we would

also have to remove edge points that are present on

the contour of the real ellipse, thus reducing its

quality and its chances of being detected. Further

filtering methods are introduced to filter out false

ellipses. We only consider an ellipse to be valid is it

has points distributed on both sides of the major axis,

furthermore we check to see if the number of points

is proportional on either side of the ellipse (when we

refer to the side of the ellipse we mean the points

located on its one side of its contour).

To improve ellipse detection, the accumulator is

quantized, resulting in a thicker ellipse contour.

Having more points on its contour, the digitization

problem is overcome, because a more complete

elliptic contour can be approximated with formulas

(3) to (8). Due to the fact that after thresholding the

original image the contours of the ellipses are thick,

for one real ellipse many ellipses appear to be in the

same place with slightly different parameters, so the

result of the detection phase must be clustered, to

obtain the real ellipses. Because we have no a priori

knowledge of how many real ellipses are in the

source image, standard clustering techniques such as

LVQ or K-means can not be applied because they are

highly dependent on the initial number of clusters.

Our approach is similar to VQ. We calculate a

similarity distance between two ellipses using ellipse

feature vectors. The feature vectors consist of the

following:

),,,,(00 αbayxV (9)

The measured distance is the Euclidian distance in

this five dimensional feature space. The distance is

calculated using the following formula:

∑
=

−=

5

1

2)(),(
i

iwiv ppWVD (10)

where),,,,(54321 vvvvv pppppV and W are vectors

of the type (9).

If the distance is above a certain similarity

threshold – which is experimentally chosen (we used

DT=20) – the ellipse is considered to be different

from the compared one, otherwise the two compared

ellipses are said to match. Each time a different

ellipse is found a new cluster is formed. Using a

single pass algorithm all the detected ellipses are

assigned to the clusters to which they belong. In the

comparison process the centroid of the cluster is used

as the representative ellipse of the group, but when

outputting the result the ellipse that is most near to

the centroid of the group is considered to be the

detected ellipse.

3.2 Ellipse detection algorithm results

The performance of the algorithm is demonstrated

using real world images. We present four cases of

real ellipse detection either with or without foreign

objects (that represent noise for the ellipse detector).

(a)

(b)

(c)

(d)

Fig. 9. Experimental Results.

Output of the ellipse detector can be seen in table 2.

TABLE 2: DETECTED ELLIPSES PARAMETERS

Fig. Center

x

(pixels)

Center

y

(pixels)

Major

Axis

(pixels)

Minor

Axis

(pixels)

Alfa

(rad)

9(a) 235.5 164.5 60 37 0.253

9(a) 71.0 49.0 44 22 0.045

9(b) 65.5 174.5 59 40 0.276

9(b) 173.0 51.5 45 22 0.122

9(c) 66.0 173.5 58 43 0.222

9(c) 176.0 50.0 47 22 0.021

9(d) 129.0 155.5 64 40 0.133

Output of the post processing phase can be seen in

table 3. Ellipse quality represents the threshold of a

high pass filter used to filter out false ellipses – we

refer to ellipse quality meaning the number of points

on its contour.

TABLE 3: DETECTED ELLIPSES STATISTICS

Fig. Virtual

Ellipses

Real

Ellipses

Ellipse

Quality

Search

Point

Pairs

Total

Edge

Points

9(a) 48 2 200 6428 3214

9(b) 42 2 200 6530 3265

9(c) 16 2 230 8198 4099

9(d) 44 1 300 6238 3119

4. COCLUSIONS

The robotic system proved to be a robust system

which can be successfully used in academic research

– e.g. multi agent research, human machine

interaction. The communication can easily be

upgraded to wireless communication. More powerful

and resourceful embedded platforms can be used, to

provide local intelligent behavior, making the system

completely or partially autonomous. The ellipse

detection method is applicable in real time

applications, native implementations (both in

hardware and software) can be very fast. It is also

robust regarding false ellipse detection. It classifies

correctly the detected ellipses as being similar or

different. As further improvements, a more advanced

adaptive method for clustering is desired, and to also

improve ellipse detection and filtering using context

information. The search step can be pseudo-random,

ellipse positions could be predicted using local and

global prediction tables or neural networks

REFERENCES

D. Ballard (1981)

Generalizing the Hough transform to detect

arbitrary shapes, Pattern Recognition, vol.

13, no. 2, pp. 111-122.

R. Chellali, V. Fremont, P. J. Czervinski (2003)

Ellipse Detection Using Hough Transform,

Warsaw University of Technology, Ecole

des Mines des Nantes.

R. Duda and P. Hart (1972)

Use of the Hough transform to detect lines

and curves in pictures, Communications of

the ACM, vol. 15, no. 1, pp. 11-15.

E. R. Davies (1990)

Machine Vision: Theory, Algorithms,

Practicalities. New York: Academic Press.

A. Rosenfeld (1969)

Picture Processing by Computer. New

York: Academic Press.

S. D. Shapiro (1975)

Transformations for the noisy computer

detection of curves in noisy pictures,

Computer Graphics and Image Processing,

vol. 4, pp. 328-338.

P. K. Sahoo, S. Soltani, A. C. Wong, and Y. C. Chen

(1988)

A survey of thresholding techniques,

Computer Vision, Graphics, and Image

Processing, vol. 41, pp. 233-260.

S. Ionel, R. Munteanu

Practical Introduction to Electronics,

Editura de Vest.

E. Swartzlander

Computer Arithmetic, Prentice-Hall

Microchip

application note 544

application note 526

datasheet pic18f4320 (DS39599B)

datasheet pic18f452 (DS39564B)

Microchip Corporation.

www.microchip.com

