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Abstract: The control problem using artificial potentials is analised for two cases: first 
case we’ll consider that the redundant manipulator moves without restriction in a free-
obstacle workspace, and in the second one the redundant manipulator moves in a 
workspace with obstacles. Numerical simulation for 3D model are presented in order to 
emphse the eficiency of the method. 
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1. INTRODUCTION 

 
Research in the area of obstacle avoidance can be 
broadly divided into two classes of methodologies: 
global and local. 
Global methodologies rely on description of the 
obstacle in the configuration space of a manipulator 
(Rimon and Koditschek, 1989; Udupa, 1977). Local 
methodologies rely on description of the obstacles 
and the manipulator in the cartesian workspace 
(Khatib, 1986; Krogh, 1984, Andrews and Hogan, 
1983). However both methodologies used artificial 
potential technique to generete the paths the robotic 
system should take in order to get its goal. In the 
global method case the artificial potential technique 
surrounds the configuration space obstacles with 
repulsive potential energy functions, and places the 
goal point at an global energy minimum (Rimon and 
Koditschek, 1989; Newman, 1989; Okutomi and 
Mori, 1986). The point in configuration space 
representing the manipulator acted upon by a force 
equal to the negative gradient of this potential field, 
and driven away from obstacles and to the minimum. 
In the local methodologies, instead, local potential 
are expressed in the cartesian workspace of the 
manipulator. Obstacles to be avoided are surrounded 
by repulsive potential function and the goal point is 
surrounded by an attractive well. These potentials are 

added to form a composite potential which imparts 
forces on a model of the manipulator in cartesian 
space. Torques equivalent to these forces cause the 
motion of the real manipulator. 
On the other hand, when we control the global 
motion of redundant manipulators, we are confronted 
with their nonlinear dynamics in many degrees of 
freedom. However, convergence to target solution 
position has not been sufficiently investigated for 
these kind of structures whose so complex dynamical 
model. Most of the work about redundant and 
hyperredundant manipulators control problem was 
donne  from kinematic poin of view. In this paper we 
analyse two control problems of a redundant 
manipulator in order to get the target position. We 
will analyse the control problem using artificial 
potentials for two cases: first case we’ll consider that 
the manipulator moves without restriction in a free-
obstacle workspace, and in the second one the 
manipulator moves in a workspace with obstacles. 
 
 
2. ARTIFICIAL POTENTIAL FIELD APPROACH 

 
As we emphased earlier most proposed potential 
function are based upon the following general idea: 
the robot should be attracted toward its goal 
configuration, whilw being repulsed by obstacles. 



The field of artificial forces )(qF in (N=2 or 
3) is produced by a differentiable potential function 

, with: 

NR=Γ

Rfree →ΓΠ :
 

)()( qqF Π∇=     (1) 
 

Where )(qΠ∇ denotes the gradient vector of Π at q. 

In (N=2 or 3), we can write q=(x,y) 
or (x,y,z), and: 

NR=Γ NR=Γ
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In order to make the robot be attracted toward its 
goal configuration while being repulsed from the 
obstacle, is constructed as a sum of two more 
elementary potential functions: 

Π

 
)()()( qqq repatt Π+Π=Π    (3) 

 
Where is the attractive potential associated with 
the goal configuration q

attΠ

goal configuration and repΠ is 
the repulsive associated with the -obstacle region. 
Both potentials are independent one each other. 

Γ

There are a varity of potential functions defined in 
the literature for attractive potential and repulsive 
anes as well. We have chossen for our work the 
following potential functions: 
The attractive potential field can be simply 
defined as a parabolic well, i.e.: 

attΠ
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Where k is a positive scaling factor and dgoal(q) 
denotes the Euclidean distance goalqq − . The 

function is positive or null, and attains its 
minimum at q

attΠ

goal, where . 0)( =Π goalatt q
The function dgoal is differentiable everywhere in Γ . 
At every configuration q, the artificial attractive force 

attF deriving from  is: attΠ
 

attatt qF Π∇−=)(  

)()( qdqkd goalgoal ∇−=    (5) 

)( goalqqk −−=  

 
The main idea underlying the definition of the 
repulsive potential is to create a potential barrier 
around the -obstacle region that cannot be travesed 
by the robot’s configuration, as well as the fact that 
the repulsive potential not affect the motion of the 
manipulator when is sufficiently far away from the 

Γ

Γ -obstacle. In order to achieve these constraints a 
definition of repulsive potential function could be as 
follows: 
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3. REDUNDANT MANIPULATOR CONTROL 
USING ARTIFICIAL POTENTIAL APROACH 

 
3.1 Dynamic system 
 
We consider a redundant mechanical system which in 
general case could have n degrees of freedom. The 
motion of the system is describe by generalized 
coordonates, the set [ ]Tqp θ= such as (Ivanescu, 
1984) descrieb an ideal tentacle arm, with a 
uniformly distributed torque. 
Further more the redundant manipulator model is 
consider as a distributed parameter system  defined 
on a fixed spatial domain (Wang, 1965) and the 
spatial coordonate. Thus the dynamic model of this 
redundant manipulator can be obtained, in general 
form, from Hamilton  partial differential equation 
(Ivanescu, 2002; Takegaki and Arimoto, 1981; 
Wang, 1965) of distributed parameter control. The 
Hamiltonian is expresed as and the 
ecuation of motion are: 

potkin EEH +=
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where  generalized coordinates, v momentum 
densities. 

p

In  the paper we use the dynamical model expressed 
only as a function of general coordonates, developed 
for infinite dimensional system using Lagrange 
equation (Ivanescu, 1984 ). 
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Where [ ]TqFFF θ= force vector which assures the 
manipulator control. 

kinE represents kinetic energy of the system and has 
the form as fallows: 
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potE  represents potential energy of the system with 
the form: 
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A sintezed form of the dynamical model of 3D 
spatial redundant manipulator is given (Ivanescu, 
2002 ) as fallows: 
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where are nonlinear functions of the motion 
parameters. As we presented so far, is obviusly that 
in the case of redundant manipulators it is dealing 
with a great number of parameters and nonlinear 
terms. However, from these reasons, to derive a 
control law using classical methods is very difficult.  

θGGq ,

In the next sections, the artificial potential method is 
extended to the control problem of this kind of 
manipulators. We will analyse the control problem 
using artificial potentials for two cases: first case 
we’ll consider that the manipulator moves without 
restriction in a free-obstacle workspace, and in the 
second one the manipulator moves in a workspace 
with obstacles. 
 
 
3.2 Control problem in a  free-obstacle workspace 
 
The control problem means the motion control by 
forces , from initial position described by qFF ,θ

))(),((: 000 sqsθΓ , to the target position ],0[ ls ∈
))(),((: sqs TTT θΓ . The target vector is 

denoted . As we mentioned from 
literarure it can be considered the assuption that, 
regarding mechanics, position is asmptotically 
stable, if the potential function of the system has a 
minimum at and the system is completely 
damped in the sense that it has a positive definite 
dissipation function (  ). In fact, the artificial potential 
function of the system has great effect on both 
dynamic and static mechanical proprieties so it is 
natural to attempt to improve the caracteristic of the 
system by modifying the potential function. 

[ T
TTT qp θ=

Let’s denotes )( pattΠ as a artificial potential fuction 
properly chosen to accomplish the goal of control for 
free-obstacle case. For this case we need only the 
attractive potential function to reach the target. 
The attractive potential field can be simply 
defined as a parabolic well, i.e.: 

attΠ
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Where k is a positive scaling factor and dtarget(p) 
denotes the Euclidean distance Tpp − . The 
function attΠ is positive or null, and attains its 
minimum at pT, where 0)( =Π Tatt p . 
Further more, if we consider the control forces 
vector, [ ]TqFFF θ= , with the form by its 
components: 
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and it is substitued in Lagrange ecuations (9), (10) of 
the dynamic model , by canceling the terms 
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system. 
From (15) the second terms of (16), (17) are actually: 
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The terms  assure the damping control 
(Ivanescu, 2004; Takegaki, 1981; Wang, 1964) and 
for practical reasons it can be used the derivative 
component of the control with the particular form:  

qTT FF ,θ
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3.3 Control problem in a restrictioned workspace  
 
For this case, in order to make the robot be attracted 
toward its goal configuration while being repulsed 
from the obstacle, Π is constructed as a sum of two 
more elementary potential functions: 
 

)()()( ppp repatt Π+Π=Π   (21) 
 



Where is the attractive potential associated with 
the target configuration p

attΠ

target configuration and 

repΠ is the repulsive associated with the -obstacle 
region. Both potentials are independent one each 
other. 
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Thus, for the second case the Lagrange equations (9), 
(10) of de dynamic model became: 
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 As we mention in paragraf 2 the repulsive potential 
acts like a potential barrier around the -obstacle 
region that cannot be travesed by the robot’s 
configuration, as well as the fact that the repulsive 
potential not affect the motion of the manipulator 
when is sufficiently far away from the -obstacle. In 
order to achieve these constraints a definition of 
repulsive potential function could be as follows: 
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where d0 represents a minimum admisible distance 
from obstacle. 
The potential can be defined in terms of position 
coordonates (x,y,z) and obstacle coordonates 
(x

Π

R,yR,zR). 
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4. SIMULATIONS 
 
In this section, some numerical test are performed, 
for both cases discused in the paper. 
 
4.1 Numerical test for redundant manipulator 

working in a free-obstacle workspace 
 
Test1. We consider a spatial redundant manipulator 
that operates in OXYZ space. Mechanical parameters 
of the system are mkg /07.0=ρ , the diameter of 

the link D=0.05, the lenght of each link mli 2.0= , 
and lenght of the manipulator  l=0,8m. 

The initial curve 0Γ is assumed to be orizontal (OY-
axis), 
 

:0Γ ( ) ( ) [ 8.0,0;00,;00, ∈ ]== ssqsθ  (26) 
And the target shape of manipulator is represented by 
a curve TΓ in OXYZ frame, with the following 
parameters of motion: 
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According with (15) the arficial potential function 
used for free-obstacle case is defined as fallows: 
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 The control law is chosen as (Ivanescu, 2002 ) 
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where the proportional and derivative coefficients are 
selected as 
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The numerical simulation of dynamical model   (16), 
(17) was carried out using Matlab framework. 
The simulation results are presented in Figure 1   
where it can be seen the initial position, the final one 
as well as the all intermediaty positions. 
 

 
 

Fig. 1.  Motion of the arm towards target position. 
 
We defined the error for global system as 
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and its derivative  
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The phase portrait of evolution can be seen in Figure 
2 where it can be observed the stability of the motion 
by error convergence to zero. 
 

 
 

Fig. 2. Phase portrait of the evolution of the system 
 
We also displayed the evolution of generalized 
coordonates, its derivatives and its accelerations in 
Figure 3  (a,b,c)  
 

 
 

Fig. 3. a. Evolution of the generalized coordinates 
 

 
 

Fig. 3. b. Evolution of their derivatives 
 

 
 

Fig. 3.c. Evolution of accelerations of the model 

4.2 Numerical test for redundant manipulator 
working in a restrictioned workspace 

 
Test2. We consider spatial redundant manipulator 
that operates in OXYZ space with the same 
mechanical parameters we defined in the previous 
paragraf. 
The initial curve 0Γ is assumed to be orizontal (OY-
axis), 
 

:0Γ ( ) ( ) [ 8.0,0;00,;00, ∈ ]== ssqsθ  (34) 
 
And the target shape of manipulator is represented by 
a curve TΓ in OXYZ frame, with the following 
parameters of motion: 
 

( ) ( ) ssqss TTT 4
;

4
: ππθ ==Γ   (35) 

 
According with (21) the arficial potential function 
used for restricted case is defined as a sum of both 
attractive and repulsive potential as fallows: 
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where 

- the attactive potential is calculated by 
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- and the repulsive potential is calculate 

according with (23) by 
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The numerical simulation result and the phase portret 
are represented in figure 4 and figure 5, respectivly.    
 

 
 

Fig. 4.  Motion of the arm towards target position. 



 
 

Fig. 5. Phase portrait of the evolution of the system 
 
We also displayed the evolution of generalized 
coordonates, its derivatives and its accelerations in 
Figure 6  (a,b,c)  
 

   
 

Fig. 6. a. Evolution of the generalized coordinates 
 

 
 

Fig. 6. b. Evolution of their derivatives 
 

 
 

Fig. 6. c. Evolution of accelerations of the model 
 
 

5. CONCLUSIONS 
 
The control problem using artificial potentials was 
analised for two cases: first case of movement 
without restriction in a free-obstacle workspace, and 
in the second one of the  movement in a workspace 
with obstacles. Numerical simulation for 3D model 

are presented in order to emphse the eficiency of the 
method. 
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