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Abstract: The paper concentrates on detection of motion from 2D image sequences and 
the image analysis used to extract feature points. It is considered a still camera with 
constant background and a moving object. Object moving across the background will 
generate changes of its feature points. Detection of these points is used to recover the 
trajectory of the moving object. The developed procedure for motion recovery was tested 
to detect the moving of a robot end-effector and real-time experimental results 
demonstrate the efficiency of the method. 
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1. INTRODUCTION 
 
Motion in image sequences captured by a video 
camera is produced by objects movements in a 3D 
scene and by camera motion. Since the camera 
parameters regarding its 3D motion (rotation, 
translation) or focal length are usually known, only 
object motion needs to be recovered. The 3D object 
motion produces 2D motion on the image plane 
through a suitable projection system. 2D motion, also 
called apparent motion or optical flow, is recovered 
from the information of image sequences and it is 
used in various applications such as image processing 
and compression or computer vision. Optical flow 
consists of the computation of the displacement of 
each pixel between frames. This yields a vector map 
representing the motion of 3D scene points that is 
called the motion field.  
 
Changes in an image sequence give features for 
detecting objects that are moving and for computing 
their trajectories. To compute motion trajectories, 
three elements are used (Stiller and Konrad, 1999): a 
motion model, an estimation criterion and search 
strategy to find the motion parameters that optimize 

the chosen criterion. The search strategy has to 
achieve a trade-off between the optimization 
performance and computation load. From this reason, 
simplified search approaches are frequently used 
including matching and gradient based methods. 
However, due to the accuracy and robustness aspects, 
the motion estimation from general image sequences 
remains an extremely difficult problem. 
 
Estimating the apparent motion from image 
sequences is used in many applications including 
robotic motion control, object tracking, autonomous 
navigation and automatic image sequence analysis 
(Horn, 1986; Cedras and Shah, 1995; Zucchelli et al., 
2002; Davis and Taylor, 2002; Nicolescu and 
Medioni, 2003). The motion vector field was used to 
estimate the three-dimensional motion of the imaging 
system, referred to as ego-motion (Tian et al., 1996), 
or employing structure from motion (Zucchelli et al., 
2002) to determine three-dimensional properties of 
rigid object. Other applications category is video 
processing and compression where motion estimation 
is an important component of the video compression 
algorithms (Keller and Averbuch, 2003). Also, in 
medical imaging, a sort of unimodal registration, 



useful for diagnostic medical conditions, is similar to 
global motion estimation (Maintz and Viergever, 
1998). 
 
This paper presents an algorithm for motion recovery 
based on future extraction from image sequences. An 
image processing technique is applied to extract 
interesting points from the first image of the 
sequence. After that, corresponding points are 
computed for the following images of the sequence. 
The corresponding points are used to compute 
motion vectors and, based on them, the motion 
trajectory is recovered. The developed algorithm for 
motion recovery was tested using a workspace which 
consists of a moving robot end-effector, a fixed 
object and a still camera. Real time experimental 
results are given. 
 
 

2. MOTION RECOVERY 
 
Our aim is to find an important feature of the motion, 
the trajectory, and to use it in tracking a robot end-
effector in a grasping application. For this reason, a 
motion recovery algorithm based on feature 
extraction from image sequences was developed. 
 
 
2.1 Motion estimation 
 
An image acquisition system generates 
measurements of the image intensity function 

( , )f tx , which represents the light emanating from a 
point X = (X,Y,Z)T on an object moving in 3D space. 
At time t, the position of X is considered: 

 ( ) 3( ) ( ), ( ), ( ) Tt x t y t z t= ∈X  (1) 

expressed in camera coordinates. Using (1) (X(t), t) 
defines a 3D curve over time called world motion 
trajectory. For any two time instants t0 and 1t , the 
world motion trajectory provides a 3D displacement 
in position:  

 1 0( ) ( ) ( )t t= −D X X X  (2) 

The image acquisition system projects the 3D point 
X onto a 2D image plane with image coordinates:  

 ( ) ( ( ), ( ))Tt x t y t= ∈Λx  (3) 

where Λ is the sampling grid. This projection 
transforms the world motion trajectory in a 2D 
motion trajectory (x(t),t), only if in the time interval 
the associated point is visible in image (Dubois and 
Konrad, 1993). 
 
Starting from (2), the 3D displacement leads to the 
2D vector displacement: 

 1 0( ) ( ) ( ),t t= −d x x x   (4) 

as depicted in Fig.1. The motion vector in the image 
represents displacements of the images of moving 3D 

points.

  
Fig.1 Motion vector d(x) 
 
Each motion vector is formed, as in Fig.1, with its 
tail at an imaged 3D point at time t0 and its head at 
the image of the same 3D point imaged at time t1. 
 
Alternatively, each motion vector might correspond 
to an instantaneous velocity estimated at time 
moments t0 and t1. The velocity vectors field is 
defined as:  

 1 0 2 1( ) ( ( , ), ( , ))Tv t v t=v x x x   (5) 

In this case the image intensity functions are modeled 
as temporally evolving according to:  

 ( ) ( ) ( )( )1 2, , , , ,0f t f x v t y v t= − −x x x   (6) 

Equation (6) specifies that the intensity function for a 
given region remains the same even the location of 
the region moves as a function of time and it is 
known as the intensity conservation assumption 
(Horn, 1986).  
 
The objective of motion estimation is to compute the 
vector field based on measurements of the image 
sequence f(x,t). There are two methods for estimating 
2D motion: motion correspondence and optical flow. 
Motion correspondence matches interesting image 
features that can be tracked through time. Optical 
flow consists of the computation of the displacement 
of each pixel between frames. This gives a vector 
map of flows in the image and individual or regional 
flows may be analyzed/tracked. The first approach 
leads to a sparse motion field and using the pixel 
based method a dense motion field is obtained.  
 
The sparse motion field is based on matching and can 
be computed by identifying pairs of interesting points 
that correspond to two images taken at times t0 and, 
respectively, t1. Estimating image flow at all points 
of an image leads to a dense motion field using, e.g., 
differential methods based on computing the velocity 
from spatio-temporal derivatives of image intensity. 
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2.2 Deriving motion vectors from interesting points 
 
Taking into account the necessity of a reduced 
computation load for the real time application of 
tracking the robot end-effector, a sparse motion field 
for motion analysis was chosen. In order to compute 
the sparse motion field, an interest operator (Shapiro 
and Stockman, 2001) was developed and 
implemented. The operator determines the variance vi 
of the image intensity function in the horizontal, 
vertical and diagonal directions of a neighborhood 
centered in the pixel x. Considering the 3x3 
neighborhood depicted in Fig. 2, the variances on i 
directions are computed as: 

 

( ) ( ) ( )(
( ) ( ) )

( ) ( ) ( )(
( ) ( ) )

( ) ( ) ( )(
( ) ( ) )

( ) ( ) ( )(
( ) ( ) )

1

2

3

4

, max

, max

, max

, max

1, , ,

1, ,

, 1 , ,

, 1 ,

1, 1 , ,

1, 1 ,

1, 1 , ,

1, 1 ,

v x y

v x y

v x y

v x y

f x y f x y

f x y f x y

f x y f x y

f x y f x y

f x y f x y

f x y f x y

f x y f x y

f x y f x y

+ −

− −

− −

+ −

− + −

+ − −

+ + −

− − −

 (7) 

The pixel location (x,y) is declared an interesting 
point only if the minimum of the four variances given 
by (7) exceeds a threshold α. 

 
Fig.2 F(x,y)- the 3x3 neighborhood of f(x,y) 
 
The locations of interesting points constitute a map 
m(x,y), which is defined as: 

 ( ) ( )1, ,
,

0, ,
fx y I

m x y
otherwise

⎧ ∈⎪= ⎨
⎪⎩

 (8) 

where 

 ( ) ( ){ }, ; min , .f i
i

I x y V x y ≥ α   (9) 

Typically, the threshold α is selected so a few pixels 
are declared interesting point. 
 
The interest operator might be implemented using the 
masks from Fig. 3 which permits the computation of 
differences from (7) via convolution with the image 
window from Fig. 2. 
 

 
Fig. 3 Masks of interest operator 
 
After finding the interesting points x(t0) identified on 
the image I(t0) taken at time t0, corresponding points 
x(t1) must be extracted from the image I(t1) taken at 
time t1. 
 
A way of determining x(t1) is based on using the 
cross-correlation method under the assumption that 
the amount of movement is limited. Thus, the 
interesting point x(t0) found in the image I(t0) is 
considered now in a mxn small search window 
W(x,y), with m,n > 3 having the center (x,y). For the 
interesting point x(t0). a mxn window of image I(t1) is 
searched for finding the best match to the small 
neighborhood F(x,y) of x(t0). The center of the best 
correlated neighborhood in I(t1) is considered to be 
the corresponding point x(t1).  
 
With interesting points x(t0) and x(t1), the motion 
vector can be constructed, as in Fig. 1, having the tail 
x(t0) and the had x(t1). In Fig. 4 is depicted the 
process of cross-correlation which leads to the 
finding of the best correlated 3x3 neighborhood 
having as center the interest point x(t1). Starting from 
3x3 neighborhood F(x,y) from image I(t0), 
considering the mxn search window W(x,y) and using 
the cross-correlation of window W(x,y)) from I(t1) 
with the neighborhood F(x,y), defined as:  
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Fig. 4 Process of finding motion vector:  

a) neighbourhood F(x,y); b) the correlating 
neighbourhood; c) motion vector.) 

 
the best match is obtained having as center the 
corresponding interest point x(t1) of x(t0). 
 
Aiming at obtaining a high search speed it is 
necessary to choose a small search window W(x,y), 
but in relation with the velocity of the object. 
 
The identified pairs of points x(t0) and x(t1) that 
correspond in two images taken at times t0 and 
respectively t1, are employed to compute a sparse 
motion field. This field permits motion recovery 
from image sequences. 
 
The proposed algorithms for motion recovery can be 
summarized as follows:  
Step 1. Take a sequence of monocular and 

monochromatic images as input; 

Step 2. Extract the interesting points from the first 
image using the interest operator defined by 
relations (7)-(9) or using the convolution of the 
image with the masks from Fig.3; 

Step 3. Calculate the corresponding point in the 
following images of the sequence based on 
interesting points and using the cross-correlation 
defined by (10); 

Step 4. Use point correspondences and compute the 
sparse motion field based on motion vectors; 

Step 5. Display the recovered motion trajectory. 
 
 
3. EXPERIMENTAL RESULTS 
 
The motion recovery algorithm has been tested with 
a workspace consisting of a moving robot end- 
effector, a fixed rectangular object and a still camera 
located up the scene. The sequence utilized in the 
motion recovery testing and depicted in Fig. 5 has 5 
images captured at time moments t0,..,t4 representing 
the 5 successive position from a grasping application. 
 

  

  

  

  

  
 
Fig. 5 The 5 positions of end-effector and the 
corresponding interesting points 
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For image acquisition the camera of OptiMaster 
system was used and the motion recovery algorithm 
was implemented on a Matlab environment running 
on a Pentium-IV 1 GHz with 512 Mb of system 
memory. An image preprocessing algorithm was 
used to transform the color image acquired with 
OptiMaster camera in a filtered monochrome image. 
 
The considered moving object was the end-effector 
of an IRB 2400 robot which had bright surfaces. In 
order to eliminate the disturbances introduced by 
reflections during the moving, mat surfaces were 
added with different grey levels. For each position, 
both grey level workspace images and the 
corresponding interesting points are shown in Fig. 5. 
The interesting points were computed for the fixed 
object and for the fingers of the end-effector.  
 

 
 
Fig.6. Motion trajectory 
 
Using the motion recovery algorithm from Section 2, 
the obtained motion trajectory is shown in Fig. 6. 
 
 
4. CONCLUSION 
 
An algorithm for motion recovery based on 
interesting points extraction from image sequences 
was presented. Experiments show that reconstructed 
results are encouraging while some improvements 
are needed, the algorithm being depending on the 
object shapes. Future work includes the usage of this 
algorithm for complex object tracking by visual 
servoing based on 2D image motion. 
 
 
REFERENCES 
 
Cedras, C., and M. Shah (1995). Motion based 

recognition: A survey, IEEE Proceedings Image 
and Vision Computing, 13, pp. 129-155. 

Davis, J. and S. Taylor (2002). Analysis and 
recognition of working movements, Proceedings 
of 16th International Conference on Pattern 
Recognition, 1. 

Dubois, E. and J. Conrad (1993). Estimation of 2D 
motion fields from image sequences with 

application to motion-compensated processing, In 
Motion Analysis and Image Sequence (Eds. M. 
Sezan and R. Lagendijk), Kluwer Academic 
Publishers, Ch. 3, pp. 53-87. 

Horn, B.K. (1986). Robot vision, Cambridge:MIT 
Press. 

Keller, Y. and A. Averbuch (2003). Fast gradient 
methods based on global motion estimation for 
video compression, IEEE Transactions on 
Circuits and Systems for Video Technology, 13, 
pp. 300-309. 

Maintz, A. and M. Viergever (1999). A survey of 
medical image registration, Medical Image 
Analysis, 2, pp. 1-36. 

Nicolescu, M. and G. Medioni (2003). Motion 
segmentation with accurate boundaries – a tensor 
voting approach, Proceedings of IEEE 
Conference on Computer Vision and Pattern 
Recognition. 

Shapiro, L. and G. Stockaman (2001). Computer 
Vision, Prentice Hall. 

Stiller, C. and J. Konrad (1999). Estimating motion 
in image sequences – A tutorial on modeling and 
computation of 2D motion, IEEE Signal 
Processing Magazine,July, pp. 70-91. 

Tian, T., C. Tomasi and D. Heeger (1996). 
Comparison of approaches to ego-motion 
computation, Proceedings of IEEE Conference on 
Computer Vision and Pattern Recognition, 
pp.315-320. 

Zucchelli, M., J. Santos-Victor and H. I. Christensen 
(2002). Constraint structure and motion 
estimation from optical flow, Proceedings of 16th 
International Conference on Pattern Recognition, 
1. 


